Open day 2024

Why take a doctoral degree at the UPC

Because of Excellence

The UPC is listed in the main international rankings as one of the top technological and research universities in southern Europe and is among the world's 40 best young universities.

Its main asset: people

Satisfaction with the work of the thesis supervisor is highlighted by 7 out of 10 UPC doctoral students. Support and availability get the best ratings.

Internationalisation

More than half of the students of the UPC’s Doctoral School are international and a third obtain the International Doctorate mention.

 

Graduate employment of a high quality

Almost all UPC doctoral degree holders are successful in finding employment, mostly in jobs related to their degree.

The best industrial doctorate

The UPC offers the most industrial doctoral programmes in Catalonia (a third) with a hundred companies involved.

The industrial setting

The UPC’s location in an especially creative and innovative industrial and technological ecosystem is an added value for UPC doctoral students.

Theses for defense agenda

Reading date: 26/04/2024

  • COLL VALENTÍ, ARNAU: Advanced c-Si solar cell structures: application of laser processes and optical nanostructures
    Author: COLL VALENTÍ, ARNAU
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ELECTRONIC ENGINEERING
    Department: Department of Electronic Engineering (EEL)
    Mode: Article-based thesis
    Deposit date: 08/03/2024
    Reading date: 26/04/2024
    Reading time: 11:00
    Reading place: Defensa: Aula de Postgrau, edifici C5-116, ETSETB
    Thesis director: BERMEJO BROTO, ALEXANDRA | MARTIN GARCIA, ISIDRO
    Committee:
         PRESIDENT: VOZ SANCHEZ, CRISTOBAL
         SECRETARI: GARIN ESCRIVA, MOISES
         VOCAL: HERNÁNDEZ GARCÍA, DAVID
    Thesis abstract: This thesis works towards efficient and cost-effective methods to improve the performance of thin silicon solar cells. Focusing on two principal objectives, the Thesis develops novel techniques to enhance the production of colloidal crystals and the possibility to apply these crystals to improve the light trapping efficiency, as well as creating a unique structure for lased doped solar cells. Both advancements focus on improving the production solar cells using low-temperature processes and thin wafers, thus circumventing the dependences of high temperature procedures, while bolstering light trapping capabilities. This approach is motivated by the restarting trend to reduce silicon wafer thickness, therefore this work is pushed by the need to overcome the actual technical and physical constrains. The initial part of the Thesis focuses on the implementation of an electrospray system for the creation of colloidal crystals. These colloidal crystals are intended for application as photonic light trapping structures in solar cells. Afterwards, these structures are tested within a laser firing process to double check the viability to be used within the laser firing technique commonly used in solar cell fabrication.The main achievements within the electrospray deposition technique are the development of polystyrene and SiO2 colloidal crystals with areas in the range of 1-2cm2 and up to 17 layers of ordered particles while keep good optical quality. These layers are created at room temperature and with a process that could be adapted to batch processing and parallelized to increase the area. The technique has also been adapted to be used in non-even surfaces like C-Si pyramids or black silicon. At the same time, these structures had been used to create inverse colloidal crystals from Al2O3 and Al2O3 /TiO2 shells while getting rid of polystyrene nanoparticles. The final Al2O3 /TiO2 structure obtains high reflectivity values up to 98.2%. Finally, these inverse opals are created on top of Al2O3 passivated C-Si wafers. These structures are able to withstand a laser firing process while keeping the passivation, demonstrating the capability to be used with in the solar cells fabrication process.The second part of the thesis focuses in the creation of a process to achieve low temperature solar cells by means of highly-doped regions that are punctually defined through laser processed dielectric films. This technique call ¿DopLaCell¿ stand for doped by laser solar cell. In the initial stages of the process and as a proof of concept, 1x1 cm2 solar cells were created on both p- and n-type substrates with efficiencies of 11.6% and 12.8% respectively. In a second step, 1x1 cm2 n-type c-Si solar cells are created using the ¿cold¿ p+ emitters used in the ¿DopLaCell¿ structure. This second batch of solar cells uses a Heterojunction with Intrinsic Thin layer (HIT) in the front face. This approach avoids the use of Transparent Conductive Oxide (TCO) on the back side of the cell thus improving the reflectivity especially with IR photons. These cells reach efficiencies up to 18.1%. Finally the process is being improved towards a pure texturized ¿DopLaCell¿. In this final step, totally ¿cold¿ 2x2 cm2 solar cells are fabricated with and efficiency up to 17.0 % .This work represents a one big step forward towards a future path of thin silicon solar cells fabrication, addressing the actual technology limitations and enabling the possibility to overcome the principal issues. This research lays the ground towards thin, affordable and efficient solar cells improving the path towards a more viable and eco-friendly energy future

Reading date: 29/04/2024

  • HÖSCHELE, JONATAN: A strontium quantum-gas microscope
    Author: HÖSCHELE, JONATAN
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Deposit date: 25/03/2024
    Reading date: 29/04/2024
    Reading time: 10:00
    Reading place: ICFO, Mediterranean Technology Park, Avinguda Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona
    Thesis director: TARRUELL PELLEGRIN, LETICIA
    Committee:
         PRESIDENT: SCHRECK, FLORIAN EBERHARD
         SECRETARI: DE RIEDMATTEN, HUGUES
         VOCAL: WEITENBERG, CHRISTOF
    Thesis abstract: The development of quantum-gas microscopes has revolutionized the field of quantum simulation with ultracold atoms. More specifically, their ability of direct observation and manipulation of degenerate quantum gases in optical lattices on a single particle level has brought novel ways of probing and engineering quantum degenerate many-body systems. So far, most of these setups have focused on alkali atoms. Combining quantum-gas microscopy with the properties of alkaline-earth atoms such as strontium gives rise to exciting research directions. In this thesis, we report on the design and construction of a strontium quantum-gas microscope. The findings in this thesis can be divided into three parts.In the first part, we focus on the accumulation of atoms in the science cell and develop a scheme to enhance the atom number in magneto-optical traps of strontium atoms operating on the 461-nm transition. This scheme resonantly populates a short-lived reservoir state, partially shielding the atomic cloud from losses in the cooling cycle. We demonstrate a factor of 2 enhancement in the atom number for the bosonic isotopes Sr-88 and Sr-84, and the fermionic isotope Sr-87, showing the efficient capture of these isotopes in our experiment. Our scheme can be readily implemented in the majority of strontium experiments, given that the shielding transition at 689 nm is commonly used for further cooling. In our case, the shielding scheme facilitates the generation of Bose-Einstein condensates.The second part of the thesis reports on the generation of degenerate quantum gases of Sr-84 with up to 200000 atoms. After summarizing the required cooling steps, we study the formation of Bose-Einstein condensates during evaporative cooling in our experiment. Analyzing the evolution of the horizontal and vertical size of our quantum-degenerate clouds in free fall leads to the characteristic asymmetric expansion, which we compare to theory for our experimental parameters. We also show the generation of smaller Bose-Einstein condensates of less than 20000 atoms with the help of a light-sheet potential. With this highly-anisotropic confinement we can consider our Bose-Einstein condensates two-dimensional for atom numbers of the order of 1000.In the third part we demonstrate site-resolved imaging of a Sr-84 bosonic quantum gas in a Hubbard-regime optical lattice potential. We confine the quantum gas by a two-dimensional optical lattice and the aforementioned light-sheet potential, both operating at strontium's clock-magic wavelength. A high-NA imaging objective enables single-atom and single-site resolved fluorescence imaging by scattering photons on strontium's broad 461-nm transition, while performing efficient attractive Sisyphus cooling of the atoms on a narrower transition at 689 nm. We reconstruct the atomic occupation of the lattice sites from the fluorescence images, obtaining imaging fidelities above 94%. Finally, we realize a Sr-84 superfluid in the Bose-Hubbard regime and observe its characteristic interference pattern after free expansion in the light sheet with single-atom resolution. Our strontium quantum-gas microscope provides a new platform to study dissipative Hubbard models and cooperative effects in atom-light interaction at the microscopic level. Moreover, the ability to capture also the fermionic isotope Sr-87 paves the way to generate degenerate Fermi gases with SU(N) symmetry and study SU(N) quantum magnetism.

Reading date: 30/04/2024

  • MARTÍ SAUMELL, JOSEP: Agile aerial manipulation: an approach based on full-body dynamics and model predictive control
    Author: MARTÍ SAUMELL, JOSEP
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN AUTOMATIC CONTROL, ROBOTICS AND VISION
    Department: Institute of Robotics and Industrial Informatics (IRI)
    Mode: Normal
    Deposit date: 26/03/2024
    Reading date: 30/04/2024
    Reading time: 11:00
    Reading place: Sala de Juntes de la Facultat Matemàtiques i Estadística (FME) de la UPC, C/Pau Gargallo, 14, 08028 Barcelona
    Thesis director: SANTAMARIA NAVARRO, ANGEL | SOLÀ ORTEGA, JOAN
    Committee:
         PRESIDENT: MANSARD, NICOLAS
         SECRETARI: MORCEGO SEIX, BERNARDO
         VOCAL: LIPPIELLO, VINCENZO
    Thesis abstract: Aerial manipulators, which commonly take the form of multirotors with attached robotic limbs, primarily employ their limbs for pure manipulation tasks and do not rely on them during aerial locomotion. Besides, their movement tends to be slow. This thesis aims to enhance an aerial manipulator¿s agility by harnessing its limb¿s capabilities to augment its overall motion. This objective involves investigating various modes of utilizing the limb: as a tail for aerial locomotion, as an arm for aerial manipulation, or as a leg for hybrid aerial-contact locomotion. The present thesis contributes to two specific domains: 1. Generation and control of agile motions for aerial manipulators, 2. Design and construction of a specialized aerial manipulator for executing agile motions.Generating agile motions requires predicting the movement of the robot considering its dynamics so that these dynamics can be used to favor the robot¿s motion. Hence, we can achieve complex maneuvers with relative ease. Optimal control is a trajectory-generation technique that meets these requirements, and that is central to this thesis. We encode the robot¿s tasks as cost functions of the optimal control problem (OCP) and use the whole-body dynamics as the constraints of the dynamic system. On the control side, to deploy such trajectories in a real robot, we use model predictive control (MPC) techniques, which is the closed-loop control extension of optimal control. To get the control command, an MPC controller solves the OCP in which we have encoded the agile trajectory, and then the controller applies the first command of the solution control trajectory. Thus, MPC requires solving an OCP at the control rate, i.e., within a few milliseconds. This forces us to use fast, specialized solvers based on the dynamic programming principle, such as differential dynamic programming (DDP). In their original form, these solvers cannot consider the control bounds. These bounds are important to create trajectories compatible with the real robot. To tackle this problem, in this thesis, we propose two DDP-based methods to consider the control bounds: one is based on a squashing function, and the other is based on a projection method. Even with these solvers, we face challenges in meeting the solving rate and are forced to reduce the MPC horizon. Reducing the MPC horizon implies that the MPC can only see a portion of the original OCP, possibly leaving out some of the tasks. This affects the predictive capability of the controller and compromises the accomplishment of the tasks, especially those that require an elaborate and dynamic maneuver. To overcome this difficulty, in this thesis, we propose to update, at each MPC iteration, the terminal cost function in the MPC with a function that encodes the part of the trajectory that remains unseen by the controller.Regarding robot design, deploying agile motions becomes difficult with existing aerial manipulators, which are generally big-size multirotor platforms with non-compliant, high-gear ratio limbs. In this thesis, we present Borinot, an open-source aerial robotic platform designed to research hybrid agile locomotion and manipulation using flight and contacts. This platform features an agile and powerful hexarotor that can be outfitted with torque-actuated limbs of diverse architecture, allowing for whole-body dynamic control. We present experiments with this robot showcasing different agile motions.In addition to the stated contributions, this thesis contributes in other areas required to operate the robot, such as a procedure for identifying the dynamical parameters based on factor-graph estimation or a hardware enhancement that allows for direct thrust control of Borinot¿s rotors.

Reading date: 02/05/2024

  • LIPA CUSI, LEONEL: Metodología numérica automatizada para la evaluación de la respuesta dinámica de construcciones prehispánicas de piedra de junta seca en el Perú.
    Author: LIPA CUSI, LEONEL
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN CONSTRUCTION ENGINEERING
    Department: (DECA)
    Mode: Change of supervisor
    Deposit date: 03/04/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: PELA, LUCA | TARQUE, SABINO NICOLA
    Committee:
         PRESIDENT: GOICOLEA RUIGÓMEZ, JOSÉ MARÍA
         SECRETARI: ROCA FABREGAT, PEDRO
         VOCAL NO PRESENCIAL: SANDOVAL MANDUJANO, CRISTIAN
         VOCAL NO PRESENCIAL: SANTA CRUZ HIDALGO, SANDRA CECILIA
         VOCAL NO PRESENCIAL: SALOUSTROS, SAVVAS
    Thesis abstract: The study and the conservation of stone heritage is a global concern, mainly when these constructions are in seismic zones. Due to its great cultural and historical diversity, Peru has many stone constructions in different archaeological sites, covering different construction typologies. Unfortunately, many of these constructions have not yet been structurally evaluated, so their structural behaviour is unknown. In addition, there is no classification of the stone structural typologies (taxonomy), so the different characteristics of existing constructions are unknown. One way to study the non-linear dynamic behaviour of these stone structures is to use a rigorous -but fast- numerical methodology to adequately reproduce the different failure mechanisms based on the dynamics of rigid bodies within the finite element method.Then, this work presents a taxonomic classification of prehispanic stone constructions in Peru, derived from a field study, as the first contribution. Based on this taxonomy, several archaeological sites in Puno and Cusco were classified, and the most common typologies of these regions were identified. The research also proposes novel algorithms developed in Python to obtain the geometric model of dry-joint stone structures using images taken by a camera, a mobile phone, or an existing photograph (including identification of stones and joints, named image segmentation). These routines allow the creation of a 3D model of each block (stone), assembling them, and exporting them to a finite element program for further evaluation.Regarding developing a numerical methodology, the dynamic of rigid bodies within the finite element method is proposed here. Each stone block is considered a rigid body interconnected with other blocks through nonlinear interfaces. This methodology was validated using Abaqus, based on the results of experimental tests developed in this thesis. The experimental campaign was carried out on three walls built with concrete blocks, simulating the geometry of the Inca structures. The walls were built on a tilting table and tested by rotating them out of the plane of the wall. Then, numerical models of the tests were developed by considering each stone as a rigid body and calibrating the contact properties to simulate the experimental behaviour correctly. The numerical results in weight, collapse angle, relative displacements at different points of the structure and collapse mechanisms were very similar to those obtained in the experimental campaign.As a case study, a section of an Inca stone wall from Sacsayhuaman, Cusco, was numerically evaluated using various seismic records. The complete geometric model of the stone wall was automatically obtained using the Python routines. Furthermore, discrete element particles represented the soil behind the wall. The properties of the numerical model were obtained from the experimental campaign, and the predominant frequencies of the structure were obtained using the vibration approach. As a result, the structure can adequately support these seismic records scaled up to a peak acceleration of 0.1 g. However, it suffers significant residual displacements for scaled records greater than 0.2 g.The proposed numerical methodology allows the rigorous evaluation of dry-jointed stone structures, knowing if the structure should be intervened to ensure its functionality. Therefore, it is expected that the results of this research will be used to study other stone constructions, opening possibilities for improving the methodology for different structural configurations.

Reading date: 03/05/2024

  • AVTZI, STYLIANI: Hybrid diffuse optics methods to assess the emergence of dementia in older adults
    Author: AVTZI, STYLIANI
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Deposit date: 25/01/2024
    Reading date: 03/05/2024
    Reading time: 10:00
    Reading place: ICFO, Mediterranean Technology Park, Avinguda Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona
    Thesis director: DURDURAN, TURGUT
    Committee:
         PRESIDENT: BUSQUETS FACIABÉN, ALBERT
         SECRETARI: ARTIGAS GARCIA, DAVID
         VOCAL: ARMENDOLA, CATERINA
    Thesis abstract: Hybrid diffuse optical devices offer a non-invasive and continuous and cost-effective method for monitoring cerebral blood flow and metabolism on the bedside use and realistic simulation applications. The incorporation of diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) in these devices extends their versatility. This PhD project focused on utilizing diffuse optics to assess brain activity during functional and stress tests in older populations.Ageing is the primary risk factor for various brain conditions such as stroke, cognitive disorders, and mobility issues. As the population becomes increasingly older, these age-related pathologies are becoming a significant social and economic burden. The underlying assumption is that microvascular damage and changes in brain blood flow regulation contribute significantly to an increased risk of cerebrovascular diseases, cognitive and mobility disorders. This underscores the importance of creating a widely accessible monitoring system and associated protocols able to detect these changes early on, ultimately leading to personalised interventions. Two multi-disciplinary studies were performed during my doctorate studies to identify alterations in the haemodynamic parameters of older adults in response to existing pathologies.Microvascular cerebral blood flow (CBF) in a cohort of younger and older adults (>65 y.o.) with and without mild cognitive impairment (MCI) in overall good health was monitored during functional and stress tests. It was observed that CBF of older adults with MCI could not recover to baseline conditions compared to younger participants indicating possible autoregulation and vasoreactivity problems similar to those previously observed in chronic sleep apnea and chronic carotid stenosis patients. CBF measurements during functional cognitive tasks revealed gender differences. For a given test MCI participants presented a statistically higher response than normocognitive (NC) subjects. The combination of these results favour the "inefficiency hypothesis" that suggests that older adults activate the brain networks as NC individuals to cope with behavioural demands but with increased activity. A new hybrid diffuse optics device was developed combining a custom-made fast-DCS with a commercial NIRS device along with external devices for physiological signal recordings in the second study. The project aimed to measure changes in cerebral haemodynamics in older adults with Motoric Risk Syndrome (MCR) during functional cognitive and motor tasks protocols to evaluate the pre-post impact at 3 and 6 months of physical exercise alone or combined with transcranial direct current stimulation (tDC). Results revealed higher CBF but not oxy-haemoglobin (HbO2) responses in dual tasks (DT) compared to single (ST). There were no differences between groups at baseline and 3 months but statistically different responses in CBF were observed at 6 months for both intervention groups compared to the control group but not in HbO2 response, indicating that intervention affects CBF response possibly due to improvements of vascular health, highlighting the importance of physical activity and transcranial stimulation on the maintenance of vascular health. A big part of my research focused on the development of new algorithms for de-contaminating the measured data from extracerebral signal to develop an optimal model to minimise the effect for both studies. In summary this study proves the capability of hybrid optics to capture the evoked haemodynamic responses in the pre-frontal cortex and offers insights into the use of techniques to assess cognitive function in older adults, specifically those with MCI and MCR. The findings highlight the complex relationship between blood flow responses and cognitive activities suggesting that compensatory mechanisms may play a role in individuals facing cognitive challenges. Future research in these areas holds promise, for enhanc

More thesis authorized for defense

The Doctoral School today

  • 45PhD programs
  • 2131doctoral students 21/22
  • 1591thesis supervisors 21/22
  • 305read theses 2021
  • 982021 thesis with I.M. and/or I.D.
  • 233 I.D. projects (29% from G.C. total)

I.M: International Mention, I.D.: Industrial Doctorate, G.C.: Generalitat de Catalunya