Skip to content

You are here: Home / Doctoral programmes / Structural Analysis

Structural Analysis

Background


The doctoral programme in Structural Analysis was launched in 1988 when the Department of Strength of Materials and Structural Engineering was established within the framework of the University Reform Law (LRU) and the Statutes of the Universitat Politècnica de Catalunya. The programme was created to produce doctoral graduates in the field of continuous media mechanics and theory of structures. This is a unique area of activity at the Universitat Politècnica de Catalunya.

The design of the programme reflects two strategic orientations. First, it has a strong international dimension to encourage the participation of many students. Professors from Latin America, European countries, Asia and Africa are involved in teaching. Second, the conceptual design of the programme and the scientific content it focuses on closely reflect the challenges and innovation-related problems that Spanish and European industry face as they seek to improve their competitiveness in a global context. One aspect of the programme’s international focus is the regular collaboration of internationally renowned professors in its delivery:


Dr S. Idelsohn (ICREA), Research Professor at CIMNE, Spain
Dr C. Felippa, University of Colorado at Boulder, USA
Dr R. Löhner, University of Washington, USA
Dr J. Rojek, Institute of Fundamental Technological Research, Academy of Sciences, Poland
Dr F. Armero, University of Berkeley, USA
Dr S. Botello, University of Guanajuato, Mexico
Dr J. Hurtado, National University of Colombia
Dr M. Cerrolaza, Central University of Venezuela

The programme also has close links with other universities and with companies in RDI. Professors and students work with a large number of companies on RDI projects within the framework of joint projects funded by national and EU research bodies. In the last five years, professors and students on the programme have participated in numerous research projects selected through competitive calls under national and EU programmes.

Rationale for the programme

In recent decades, major technological advances have facilitated deeper and more effective approaches and methods in structural analysis. This has been achieved in part thanks to more powerful and precise calculation tools but also because specialists in the field are being called on to solve increasingly complex problems facing society.

In this context, the doctoral programme in Structural Analysis meets two needs. First, it introduces vertical content related to analysis and calculation of structures. This means studying and analysing the full array of concepts, methods and numerical tools needed to calculate different types of structures: beams, plates, sheets, etc. Students are also introduced to constitutive equations that define the behaviour of materials and therefore their structural response.

Second, the programme covers horizontal content related to the mechanics of continuous media and the use of numerical techniques to solve problems. Study focuses on the numerical solution (linear and nonlinear) of equations related to heat transmission, fracture mechanics and some complex industrial processes (filling of moulds, sheet metal stamping, laminating, forging, etc.) and Navier-Stokes equations, among other topics. This dual approach makes the doctoral programme in Structural Analysis, which covers both the mechanics of continuous media and structure theory, unique at the Universitat Politècnica de Catalunya.

Programme objectives

The objective of the doctoral programme in Structural Analysis is to develop high-quality researchers in the field of structural analysis, conceived in its broadest sense within the mechanics of continuous media, and in the application of numerical techniques (mainly finite elements) in this area. The programme focuses on two basic aspects of structural analysis:
• Methodology
• Applications

Methodology

In this dimension, the objectives of the programme are as follows:
• To provide students with a deeper knowledge of the most commonly used structural materials and their numerical treatment: two and three-dimensional continuous media, beams, plates and sheets
• To develop and extend students’ knowledge and understanding of constitutive equations for materials that can be used to analyse their behaviour
• To introduce students to the numerical treatment of differential and integral equations that govern the structural behaviour of materials
• To use various numerical solution methods to analyse equations resulting from discretisation of the continuum, including coupling and interaction problems.

Applications

As soon as students have acquired the basic knowledge indicated above, they must choose a specialisation based on the objectives of their doctoral thesis. In this context, the doctoral programme in Structural Analysis covers the following fields:

- Structural engineering, including seismic analysis, structural pathologies, numerical analysis of composite and functional materials, etc.

- Solving multiphysical problems: thermomechanical analysis, fluid-structure interaction, etc.

- Numerical simulation of industrial processes: additive manufacturing, rolling, welding, forging, solidification, deep drawing, etc.

External collaborations

Practically all top-tier universities in the Americas, Europe and Asia with doctoral-level civil engineering programmes (environmental, mechanical or materials) offer doctoral degrees related to structural analysis. Professors in the UPC’s Department of Civil and Environmental Engineering maintain close relations in research-related areas with many professors at these universities, resulting in joint papers and coordinated research projects. These contacts also facilitate exchanges and periods of mobility for professors and students and participation in the examination committees of various national programmes.

Mobility

Doctoral students will have opportunities to undertake periods of mobility at institutions abroad to carry out research activities and/or participate in conferences that are directly related to their thesis or cover other topics of interest for their training and development.

Mobility is facilitated by research projects carried out through the Department, in collaboration with related research centres (e.g. the International Centre for Numerical Methods in Engineering), and within the framework of European consortia and other international projects.

Quality award

The doctoral programme in Structural Analysis has been recognised with a quality award given by the Spanish Ministry of Education and Science following assessment by the National Agency for Quality Assessment and Accreditation (quality award code MCD2005-00341; awarded/renewed for 2005, 2006, 2007 and 2008).

COORDINATOR

Chiumenti, Michele

CONTACT

Office 202 – Building C2 (North Campus)
Tel.: 934 016 497
E-mail: doctorat.AE.camins@upc.edu

Programme website

General information

Access profile

Applicants should have an academic background in engineering, science or technology and have completed a master’s degree in a field related to the scientific area of the programme. Students seeking admission to the programme must demonstrate basic knowledge in the field of structural analysis, particularly with regard to the mechanics of continuous media; solid and fluid mechanics; and linear, nonlinear, static and dynamic behaviour of materials and structures. It is recommended that students have some knowledge of programming (computational mechanics).

In addition to a suitable academic background, it is considered important that applicants have certain personal characteristics – namely, an interest in the research projects carried out within the framework of the programme; critical and analytical skills; initiative and perseverance in their academic work; the ability to work in a team; and the ability to communicate effectively, both orally and in writing.

Specific admission requirements

Students who have completed one of the following UPC master's degrees qualify for direct admission to the doctoral programme in Structural Analysis and will not be required to take any bridging courses.

- Master's degree in Civil Engineering
- Master's degree in Numerical Methods in Engineering
- Erasmus Mundus master's degree in Computational Mechanics

The academic committee may recognise other master's degrees or postgraduate studies in the sciences as equivalent to the qualifications listed above. For the recognition of degree equivalency, the academic committee for the programme will assess to what extent the qualification in question corresponds to one of the masters degrees listed above in terms of the number of credits and the subjects studied. The academic standing of the institution that awarded the degree will also be considered. Students who hold a master's degree or have completed postgraduate studies recognised by the UPC as equivalent to one of the masters degree’s specified above will be admitted to the doctoral programme automatically.

The academic committee will consider applications from students who do not meet these requirements on a case-by-case basis. In general, preference will be given to applicants who hold a master's degree in the sciences as defined in the Bologna Process guidelines.

Output profile

Doctoral candidates who complete a doctoral degree will have acquired the following competencies, which are needed to carry out quality research (Royal Decree 99/2011, of 28 January, which regulates official doctoral studies):

a) A systematic understanding of the field of study and a mastery of the research skills and methods related to the field.
b) An ability to conceive, design or create, put into practice and adopt a substantial process of research or creation.
c) An ability to contribute to pushing back the frontiers of knowledge through original research.
d) A capacity for critical analysis and an ability to assess and summarise new and complex ideas.
e) An ability to communicate with the academic and scientific community and with society in general as regards their fields of knowledge in the manner and languages that are typical of the international scientific community to which they belong.
f) An ability to foster scientific, technological, social, artistic and cultural progress in academic and professional contexts within a knowledge-based society.

The award of a doctoral degree must equip the graduate for work in a variety of settings, especially those requiring creativity and innovation. Doctoral graduates must have at least acquired the personal skills needed to:

a) Develop in contexts in which there is little specific information.
b) Find the key questions that must be answered to solve a complex problem.
c) Design, create, develop and undertake original, innovative projects in their field.
d) Work as part of a team and independently in an international or multidisciplinary context.
e) Integrate knowledge, deal with complexity and make judgements with limited information.
f) Offer criticism on and intellectually defend solutions.

Finally, with respect to competencies, doctoral students must:
a) have acquired advanced knowledge at the frontier of their discipline and demonstrated, in the context of internationally recognised scientific research, a deep, detailed and well-grounded understanding of theoretical and practical issues and scientific methodology in one or more research fields;
b) have made an original and significant contribution to scientific research in their field of expertise that has been recognised as such by the international scientific community;
c) have demonstrated that they are capable of designing a research project that serves as a framework for carrying out a critical analysis and assessment of imprecise situations, in which they are able to apply their contributions, expertise and working method to synthesise new and complex ideas that yield a deeper knowledge of the research context in which they work;
d) have developed sufficient autonomy to set up, manage and lead innovative research teams and projects and scientific collaborations (both national and international) within their subject area, in multidisciplinary contexts and, where appropriate, with a substantial element of knowledge transfer;
e) have demonstrated that they are able to carry out their research activity in a socially responsible manner and with scientific integrity;
f) have demonstrated, within their specific scientific context, that they are able to make cultural, social or technological advances and promote innovation in all areas within a knowledge-based society;
g) have demonstrated that they are able to participate in scientific discussions at the international level in their field of expertise and disseminate the results of their research activity to audiences of all kinds.

Number of places

10

Duration of studies and dedication regime

Duration
The maximum period of study for full-time doctoral studies is three years, counted from the date of admission to the programme to the date of submission of the doctoral thesis. The academic committee of the doctoral programme may authorise a doctoral candidate to pursue doctoral studies on a part-time basis. In this case, the maximum period of study is five years, counting from the date of admission to the programme to the date of submission of the doctoral thesis. For calculating these periods, the date of admission is considered to be the date of the first enrolment for tutorials, and the date of submission the moment in which the Doctoral School officially deposits the doctoral thesis.

For full-time doctoral candidates, the minimum period of study is two years, counted from the date of an applicant's admission to the programme until the date on which the doctoral thesis is deposited; for part-time doctoral candidates it is four years. When there are justified grounds for doing so, and the thesis supervisor and academic tutor have given their authorisation, doctoral candidates may request that the academic committee of their doctoral programme exempt them from the minimum period of study requirement.

The calculation of periods of study will not include periods of absence due to illness, pregnancy or any other reason provided for in the regulations in force. Students who find themselves in any of these circumstances must notify the academic committee of the doctoral programme, which, where appropriate, must inform the Doctoral School. Doctoral candidates may also temporarily withdraw from the programme for up to one year, and this period may be extended for an additional year. Doctoral candidates who wish to interrupt their studies must submit a justified request to the academic committee of the doctoral programme, which will decide whether or not to approve the request. Each programme will establish conditions for readmission to doctoral studies.

Extension
If full-time doctoral candidates have not applied to deposit their thesis by the end of the three-year period of study, the academic committee of the programme may authorise an extension of up to one year. In exceptional circumstances, a further one-year extension may be granted, subject to the conditions established by the corresponding doctoral programme. In the case of part-time doctoral candidates, an extension of two years may be authorised. In both cases, in exceptional circumstances a further one-year extension may be granted by the Doctoral School's Standing Committee, upon the submission of a reasoned application by the academic committee of the doctoral programme.

Dismissal from the doctoral programme
A doctoral candidate may be dismissed from a doctoral programme for the following reasons:

  • The doctoral candidate submitting a justified application to withdraw from the programme.
  • The maximum period of study and of extensions thereof ending.
  • The doctoral candidate not having enrolled every academic year (unless he or she has been authorised to temporarily withdraw).
  • The doctoral candidate failing two consecutive assessments.
  • The doctoral candidate having disciplinary proceedings filed against him or her that rule that he or she must be dismissed from the UPC.

Dismissal from the programme implies that doctoral candidates cannot continue studying at the UPC and the closing of their academic record. This notwithstanding, they may apply to the academic committee of the programme for readmission and the committee must reevaluate them in accordance with the criteria established in the regulations.

Organization

COORDINATOR:
ACADEMIC COMMISSION OF THE PROGRAM:
STRUCTURAL UNITS:
  • Department of Civil and Environmental Engineering (PROMOTORA)
Specific URL of the doctoral program:
https://deca.upc.edu/ca/doctorat-recerca/doctorat/analisi-estuctural

CONTACT:

Office 202 – Building C2 (North Campus)
Tel.: 934 016 497
E-mail: doctorat.AE.camins@upc.edu


Agreements with other institutions


Access, admission and registration

Access profile

Applicants should have an academic background in engineering, science or technology and have completed a master’s degree in a field related to the scientific area of the programme. Students seeking admission to the programme must demonstrate basic knowledge in the field of structural analysis, particularly with regard to the mechanics of continuous media; solid and fluid mechanics; and linear, nonlinear, static and dynamic behaviour of materials and structures. It is recommended that students have some knowledge of programming (computational mechanics).

In addition to a suitable academic background, it is considered important that applicants have certain personal characteristics – namely, an interest in the research projects carried out within the framework of the programme; critical and analytical skills; initiative and perseverance in their academic work; the ability to work in a team; and the ability to communicate effectively, both orally and in writing.

Specific admission requirements

Students who have completed one of the following UPC master's degrees qualify for direct admission to the doctoral programme in Structural Analysis and will not be required to take any bridging courses.

- Master's degree in Civil Engineering
- Master's degree in Numerical Methods in Engineering
- Erasmus Mundus master's degree in Computational Mechanics

The academic committee may recognise other master's degrees or postgraduate studies in the sciences as equivalent to the qualifications listed above. For the recognition of degree equivalency, the academic committee for the programme will assess to what extent the qualification in question corresponds to one of the masters degrees listed above in terms of the number of credits and the subjects studied. The academic standing of the institution that awarded the degree will also be considered. Students who hold a master's degree or have completed postgraduate studies recognised by the UPC as equivalent to one of the masters degree’s specified above will be admitted to the doctoral programme automatically.

The academic committee will consider applications from students who do not meet these requirements on a case-by-case basis. In general, preference will be given to applicants who hold a master's degree in the sciences as defined in the Bologna Process guidelines.

Access requirements

Applicants must hold a Spanish bachelor’s degree or equivalent and a Spanish master’s degree or equivalent, provided they have completed a minimum of 300 ECTS credits on the two degrees (Royal Decree 43/2015, of 2 February)

In addition, the following may apply:

  • Holders of an official degree awarded by a university in Spain or any other country in the European Higher Education Area, pursuant to the provisions of Article 16 of Royal Decree 1393/2007, of 29 October, which establishes official university course regulations, who have completed a minimum of 300 ECTS credits on official university degrees, of which at least 60 must be at the master's degree level.
  • Holders of an official Spanish bachelor’s degree comprising at least 300 credits, as provided for by EU regulations. Holder of degrees of this kind must complete bridging courses unless the curriculum of the bachelor’s degree in question included research training credits equivalent in value to those which would be earned on a master's degree.
  • Holders of an official university qualification who, having passed the entrance examination for specialised medical training, have completed at least two years of a training course leading to an official degree in a health-sciences specialisation.
  • Holders of a degree issued under a foreign education system. In these cases, homologation is not required, but the UPC must verify that the degree certifies a level of training equivalent to an official Spanish master's degree and qualifies the holder for admission to doctoral studies in the country where it was issued. Admission on this basis does not imply homologation of the foreign degree or its recognition for any purpose other than admission to doctoral studies.
  • Holders of a Spanish doctoral qualification issued under previous university regulations.
  • Note 1: Doctoral studies entrance regulations for holders of an undergraduate degree awarded before the introduction of the EHEA (CG 47/02 2014)

    Note 2: Governing Council Decision 64/2014, which approves the procedure and criteria for assessing the fulfilment of academic admission requirements for doctoral studies by holders of non-homologated foreign degrees (CG 25/03 2014)

Admission criteria and merits assessment

The academic committee will make admission decisions on a case-by-case basis, taking into account the following factors:

 • Nature and details of previous studies (30%)
 • Academic record (20%)
 • Previous research experience and publications (10%)
 • Motivation to undertake studies in structural analysis (10%)
 • Scientific/academic excellence of the university or higher education institution where the applicant completed their previous degree (10%)
 • Knowledge of English (10%)
 • Availability of scholarships or grants (10%)

Training complements

The academic committee for the programme may require that doctoral students pass specific bridging courses. In such cases, the committee will keep track of the bridging courses completed and establish appropriate criteria to limit their duration.

Bridging courses will provide research training. In no case may doctoral students be required to enrol for 60 or more ECTS credits.

When students admitted to the doctoral programme are required to complete additional training, the bridging courses they must take will be specified at the time of admission from among the subjects listed below (grouped according to the master’s course on which they are taught).

Master's degree in Civil Engineering

Subject: Mechanics of Continuous Media

Subject: Structural Analysis

Subject: Structural Engineering

Master's degree in Numerical Methods in Engineering

Subject: Finite Element Method

Subject: Mechanics of Continuous Media

Subject: Computational Solid Mechanics

Subject: Mechanics and Computational Dynamics of Structures


Erasmus Mundus master's degree in Computational Mechanics

Subject: Finite Element Methods

Subject: Continuum Mechanics

Subject: Computational Solid Mechanics

Subject: Computational Structural Mechanics and Dynamics

Enrolment period for new doctoral students

From around mid-September to mid-October of each academic year

February (extraordinary enrolment), mainly for students awaiting visas and/or grants

More information at the registration section for new doctoral students

Enrolment period

From around mid-September to mid-October of each academic year

More information at the general registration section

Monitoring and evaluation of the doctoral student

Procedure for the preparation and defense of the research plan

Doctoral candidates must submit a research plan, which will be included in their doctoral student activity report, before the end of the first year. The plan may be improved over the course of the doctoral degree. It must be endorsed by the tutor and the supervisor, and it must include the method that is to be followed and the aims of the research.

At least one of these annual assessments will include a public presentation and defence of the research plan and work done before a committee composed of three doctoral degree holders, which will be conducted in the manner determined by each academic committee. The examination committee awards a Pass or Fail mark. A Pass mark is a prerequisite for continuing on the doctoral programme. Doctoral candidates awarded a Fail mark must submit a new research plan for assessment by the academic committee of the doctoral programme within six months.

The committee assesses the research plan every year, in addition to all of the other activities in the doctoral student activity report. Doctoral candidates who are awarded two consecutive Fail marks for the research plan will be obliged to definitely withdraw from the programme.

If they change the subject of their thesis, they must submit a new research plan.

Formation activities

Tutorial (compulsory, 288 hours): Advice, support, progress review and monitoring of doctoral students to ensure that they develop the necessary competencies. This activity will be recorded on the doctoral student activity report and reviewed by the student’s thesis supervisor.

Mobility (optional) (480 hours): Periods of mobility undertaken at institutions abroad to carry out research activity and/or participate in conferences that are directly related to a student’s thesis or cover other topics of interest for their training and development. When students are admitted directly to the programme, they will participate in mobility activities from the second year of study. Otherwise, participation in these activities will begin 12 months after students complete the bridging courses specified as a condition for admission or any additional training required by their tutor or thesis supervisor.
Seminars (optional) (60 hours): When visiting professors are completing stays in the Department, seminars are organised for doctoral students so that they can learn about the results of research projects related to their thesis work.
Courses (optional): The training of doctoral students may be complemented through participation in courses that are part of a specific master’s degree:
• Master's degree in Structural and Construction Engineering
• Master's degree in Numerical Methods in Engineering
• Master's degree in Civil Engineering
• Master's degree in Computational Mechanics
• Others

Procedure for assignment of tutor and thesis director

The academic committee of the doctoral programme assigns a thesis supervisor to each doctoral candidate when they are admitted or enrol for the first time, taking account of the thesis supervision commitment referred to in the admission decision.

The thesis supervisor will ensure that training activities carried out by the doctoral candidate are coherent and suitable, and that the topic of the candidate’s doctoral thesis will have an impact and make a novel contribution to knowledge in the relevant field. The thesis supervisor will also guide the doctoral candidate in planning the thesis and, if necessary, tailoring it to any other projects or activities undertaken. The thesis supervisor will generally be a UPC professor or researcher who holds a doctoral degree and has documented research experience. This includes PhD-holding staff at associated schools (as determined by the Governing Council) and UPC-affiliated research institutes (in accordance with corresponding collaboration and affiliation agreements). When thesis supervisors are UPC staff members, they also act as the doctoral candidate’s tutor.

PhD holders who do not meet these criteria (as a result of their contractual relationship or the nature of the institution to which they are attached) must be approved by the UPC Doctoral School's Standing Committee in order to participate in a doctoral programme as researchers with documented research experience.

The academic committee of the doctoral programme may approve the appointment of a PhD-holding expert who is not a UPC staff member as a candidate’s thesis supervisor. In such cases, the prior authorisation of the UPC Doctoral School's Standing Committee is required. A UPC staff member who holds a doctoral degree and has documented research experience must also be proposed to act as a co-supervisor, or as the doctoral candidate’s tutor if one has not been assigned.

A thesis supervisor may step down from this role if there are justified reasons (recognised as valid by the committee) for doing so. If this occurs, the academic committee of the doctoral programme will assign the doctoral candidate a new thesis supervisor.

Provided there are justified reasons for doing so, and after hearing any relevant input from the doctoral candidate, the academic committee of the doctoral programme may assign a new thesis supervisor at any time during the period of doctoral study.

If there are academic reasons for doing so (an interdisciplinary topic, joint or international programmes, etc.) and the academic committee of the programme gives its approval, an additional thesis supervisor may be assigned. Supervisors and co-supervisors have the same responsibilities and academic recognition.

The maximum number of supervisors of a doctoral thesis is two: a supervisor and a co-supervisor.

For theses carried out under a cotutelle agreement or as part of an Industrial Doctorate, if necessary and if the agreement foresees it this maximum number of supervisors may not apply. This notwithstanding, the maximum number of supervisors belonging to the UPC is two.

More information at the PhD theses section

Permanence

The academic committee of the programme may authorise an extension of up to one year for full-time doctoral candidates who have not applied to deposit their thesis by the end of the three-year period of study, in the terms outlined in the Academic Regulations for Doctoral Studies of the Universitat Politècnica de Catalunya. In the case of part-time candidates, an extension of two years may be authorised. In both cases, in exceptional circumstances a further one-year extension may be granted by the Doctoral School's Standing Committee, upon the submission of a reasoned application by the academic committee of the doctoral programme.

A doctoral candidate may be dismissed from a doctoral programme for the following reasons:

  • The doctoral candidate submitting a justified application to withdraw from the programme.
  • The maximum period of study and of extensions thereof ending.
  • The doctoral candidate not having enrolled every academic year (unless he or she has been authorised to temporarily withdraw).
  • The doctoral candidate failing two consecutive assessments.
  • The doctoral candidate having disciplinary proceedings filed against him or her that rule that he or she must be dismissed from the UPC.

Dismissal from the programme implies that doctoral candidates cannot continue studying at the UPC and the closing of their academic record. This notwithstanding, they may apply to the academic committee of the programme for readmission and the committee must reevaluate them in accordance with the criteria established in the regulations.

International Mention

The doctoral degree certificate may include International Doctorate mention. In this case, the doctoral candidate must meet the following requirements:

a) During the period of study leading to the award of the doctoral degree, the doctoral candidate must have spent at least three months at a respected higher education institution or research centre outside Spain to complete courses or do research work. The stays and activities carried out must be endorsed by the thesis supervisor and authorised by the academic committee of the programme. The candidate must provide a certifying document issued by the person responsible for the research group of the body or bodies where the stay or activity was completed. This information will be added to the doctoral student’s activity report.
b) Part of the thesis (at least the summary and conclusions) must be written and presented in one of the languages commonly used for science communication in the relevant field of knowledge, which must not be an official language of Spain. This rule does not apply to stays and reports in Spanish or to experts from Spanish-speaking countries.
c) At least two PhD-holding experts belonging to a higher education institution or research centre outside Spain must have issued officially certified reports on the thesis.
d) The thesis examination committee must have included at least one PhD-holding expert from a higher education or research institution outside Spain who was not responsible for the candidate’s stay abroad (point a) above).
e) The thesis defence must have taken place on UPC premises or, in the case of joint programmes, at the location specified in the collaboration agreement.

Learning resources

Elasticity and Strength of Materials Laboratory (LERMA)

https://lerma.upc.edu/ca

Laboratory for Technological Innovation in Structures and Materials (LITEM)
https://litem.upc.edu/ca

Doctoral Theses

List of authorized thesis for defense

No hi ha registres per mostrar.

Last update: 10/08/2022 04:45:24.

List of lodged theses

No hi ha registres per mostrar.

Last update: 10/08/2022 04:30:22.

List of defended theses by year

  • BOVÉ TOUS, ORIOL: Improvement of Down-aisle Stability and Ductility for Unbraced Adjustable Pallet Racking Systems.
    Author: BOVÉ TOUS, ORIOL
    Thesis link: http://hdl.handle.net/10803/673615
    Programme: DOCTORAL DEGREE IN STRUCTURAL ANALYSIS
    Department: (DECA)
    Mode: Article-based thesis
    Reading date: 04/02/2022
    Thesis director: LOPEZ ALMANSA, FRANCISCO | FERRER BALLESTER, MIQUEL

    Committee:
         PRESIDENT: BENAVENT CLIMENT, AMADEO
         SECRETARI: BONADA BO, JORDI
         VOCAL: SIMONCELLI, MARCO
    Thesis abstract: Pallet racking systems are structures intended to store products. Their proper structural design is of paramount importance as its collapse can lead to significant economic losses and even human. This type of structures is prone to instabilities and also presents low ductility; consequently, the integrity of these structures is compromised, especially when exposed to extreme actions such as seismic events. Therefore, selective racks' stability and ductility improvement is a relevant issue. Nevertheless, the costs must be as low as possible due to tough industrial competitiveness. The objective of this Thesis is to provide numerical tools and technological solutions aiming to enhance, in an inexpensive way, the stability and ductility of racks. In the first step of this Thesis ¿presented in the paper: Systemized Structural Predesign Method for Selective Racks¿ a systemized predesign method of non-regular racks is developed based on a single-column model made with 2-D beam elements. This model considers the down-aisle global behavior of unbraced pallet racks under both gravitational and lateral actions. The aim is to obtain optimal structures in terms of cost while satisfying certain used-defined stability requirements. The results highlight the crucial role of the beams (and the beam-to-upright connections) in the inexpensive improvement of global stability. Since the solutions are non-regular and not obvious, no simplified design rules are given; some computationally efficient numerical tools are provided instead. The second step of this research is focused on one specific beam-to-upright connection. The objective is to improve its ductility, energy dissipation capacity, and stiffness under seismic excitation as inexpensively as possible. This objective is achieved by modifying the welding layout in order to distribute the stresses more efficiently and, as a consequence, move the failure point away from the welds; the new failure mode is more ductile. The effectiveness of this technique is demonstrated through FEM numerical analyses of monotonic tests, shown in the publication: Numerical investigation on a seismic testing campaign on adjustable pallet rack speed-lock connections. The models are first calibrated with experiments, and then the stress distributions in both the elastic and plastic range are deeply analyzed. Finally, continuing with the research on this specific joint, a wide experimental campaign is performed, including monotonic and cyclic tests; these tests are presented in the publication: Ductility improvement of adjustable pallet rack speed-lock connections: Experimental study. This paper successfully demonstrates the aforementioned enhanced properties of the novel welding layout. Additionally, two different cyclic testing protocols are compared and proven to influence the failure mode and, thus, the obtained ductility and energy dissipation capacity.

  • LU, XUFEI: Computational and experimental thermo-mechanics of metal additive manufacturing: stress, warpage, cracks and properties.
    Author: LU, XUFEI
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN STRUCTURAL ANALYSIS
    Department: (DECA)
    Mode: Article-based thesis
    Reading date: 15/07/2022
    Thesis director: CHIUMENTI, MICHELE | CERVERA RUIZ, LUIS MIGUEL

    Committee:
         PRESIDENT: MOLOTNIKOV, ANDREY
         SECRETARI: CAICEDO SILVA, MANUEL ALEJANDRO
         VOCAL: SALMI, ALESSANDRO
    Thesis abstract: The objectives of this thesis are (i) to understand the thermal, metallurgical and mechanical behavior during AM, (ii) to shed light on the generation of residual stresses and the stress-induced deformations and cracks, and (iii) to further propose several effective strategies to control such defects. To improve the efficiency and reliability of the research investigation, an enhanced thermomechanical finite element framework for AM is developed and validated by numerous in-situ temperature and displacement measurement experiments. Furthermore, the calibrated model is employed to perform a large number of thermal and mechanical analyses in AM processes. For this purpose, Ti6Al4V titanium alloy is selected as the printing material for this investigation due to its wide application in aeronautics and astronautics.First of all, the effect of the complex thermal histories experienced on the metallurgical evolution and the formation of layer bands in multi-layer multi-pass Ti6Al4V blocks fabricated by laser directed energy deposition (DED) are explored. Based on the analysis of the predicted thermal histories and the experimental microstructure observation, the quantitative processing-thermal-microstructure-microhardness relationship is established.Next, the mechanical behavior of AM-components in terms of residual stresses, part warpages and cracks are analyzed in detail. Here, the influence of the scanning strategy on the heat transfer process and the evolution of the thermally induced mechanical variables in laser-based AM are studied to reduce residual stresses and deformations of rectangular DED-parts. Next, the thermal deformation of several different thin-walled structures printed by laser powder bed fusion (LPBF) are experimentally and numerically investigated in order to control the stress-induced warpages and to increase the geometrical precision of AM lightweight components. The generation of residual stresses and the key factors for their development are elucidated. A novel strategy to optimize the design of the substrate structures is proposed to mitigate the residual stresses induced by AM process. Moreover, a systematical evaluation on the effectiveness of different strategies to control the residual stresses in AM is carried out. Lastly, the formation mechanism of cracks is explored by analyzing the mechanical behavior of two T-shape parts deposited on different substrates without and with grooves. An innovative strategy to optimize the substrate geometry lowering its mechanical stiffness is proposed to prevent cracks during LPBF.Finally, a proposal to achieve high-quality Ti6Al4V AM-builds with lower residual stresses and homogeneous microstructures is detailed based on the better understanding on the process-structure-property interactions, and the formation and control of residual stresses in AM processes. This thesis presents further insight into the interactive thermal-metallurgical-mechanical behavior in metal AM and provides a comprehensive framework to guide AM designers to optimize process configuration when fabricating complex metal components.

Last update: 10/08/2022 05:00:59.

Theses related publications

AUTHOR:LU, XUFEI
Title:Computational and experimental thermo-mechanics of metal additive manufacturing: stress, warpage, cracks and properties.
Reading date:15/07/2022
Director:CHIUMENTI, MICHELE
Co-director:CERVERA RUIZ, LUIS MIGUEL
Mention:No mention
RELATED PUBLICATIONS
Element Vaporization of Ti-6Al-4V Alloy during Selective Laser Melting
Zhang, G.; Chen, J.; Zheng, M.; Yan, Z.; Xufei Lu; Lin, X.; Huang, W.
Metals, ISSN: 2075-4701 (JCR Impact Factor-2020: 2.351; Quartil: Q2)
Publication date: 27/03/2020
Journal article

Modeling of the effect of the building strategy on the thermomechanical response of Ti-6Al-4V rectangular parts manufactured by laser directed energy deposition
Xufei Lu; Cervera, M.; Chiumenti, M.; Li, J.; Ji, X.; Zhang, G.; Lin, X.
Metals, ISSN: 2075-4701 (JCR Impact Factor-2020: 2.351; Quartil: Q2)
Publication date: 12/2020
Journal article

Passive behavior of nickel-based superalloys prepared by high-deposition-rate laser solid forming additive manufacturing
Guo, P.; Lin, X.; liu, J.; Xu, J.; Li, J.; Zhang, Y.; Xufei Lu; Qu, N.; Lan, H.; Huang, W.
Corrosion science, ISSN: 0010-938X (JCR Impact Factor-2020: 7.205; Quartil: Q1)
Publication date: 12/2020
Journal article

Substrate design to minimize residual stresses in Directed Energy Deposition AM processes
Xufei Lu; Chiumenti, M.; Cervera, M.; Li, J.; Lin, X.; Ma, L.; Zhang, G.; Enquan Liang
Materials & design, ISSN: 0264-1275 (JCR Impact Factor-2019: 6.289; Quartil: Q1)
Publication date: 04/2021
Journal article

Warpage analysis and control of thin-walled structures manufactured by laser powder bed fusion
Xufei Lu; Chiumenti, M.; Cervera, M.; Hua Tan; Xin, L.; Song, W.
Metals, ISSN: 2075-4701 (JCR Impact Factor-2019: 2.117; Quartil: Q1)
Publication date: 05/2021
Journal article

Simulation-assisted investigation on the formation of layer bands and the microstructural evolution in directed energy deposition of Ti6Al4V blocks
Xufei Lu; Zhang, G.; Li, J.; Cervera, M.; Chiumenti, M.; Chen, J.; Lin, X.; Huang, W.
Virtual and physical prototyping, ISSN: 1745-2759 (JCR Impact Factor-2019: 7.31; Quartil: Q1)
Publication date: 09/2021
Journal article

Residual stresses control in additive manufacturing
Xufei Lu; Cervera, M.; Chiumenti, M.; Lin, X.
Journal of manufacturing and materials processing, ISSN: 2504-4494 (JCR Impact Factor-2020: 0.506; Quartil: Q2)
Publication date: 12/2021
Journal article

Mitigation of residual stresses and microstructure homogenization in directed energy deposition processes
Xufei Lu; Chiumenti, M.; Cervera, M.; Zhang, G.; Lin, X.
Engineering with computers, ISSN: 0177-0667 (JCR Impact Factor-2020: 7.963; Quartil: Q1)
Publication date: 01/2022
Journal article

An enhanced finite element modelling based on self-regulation effect in directed energy deposition of Ti–6Al–4V
Yao, B.; Xufei Lu; Ma, L.; Kang, N.; Sui, S.; Tan, H.; Chen, J.
Journal of materials research and technology, ISSN: 2238-7854 (JCR Impact Factor-2020: 3.5
Publication date: 01/03/2022
Journal article

In-situ grain structure control in directed energy deposition of Ti6Al4V
Zhang, G.; Xufei Lu; Li, J.; Chen, J.; Lin, X.; Wang, Meng; Tan, H.; Huang, W.
Additive manufacturing, ISSN: 2214-8604 (JCR Impact Factor-2020: 11.6
Publication date: 01/07/2022
Journal article

AUTHOR:BOVÉ TOUS, ORIOL
Title:Improvement of Down-aisle Stability and Ductility for Unbraced Adjustable Pallet Racking Systems.
Reading date:04/02/2022
Director:LOPEZ ALMANSA, FRANCISCO
Co-director:FERRER BALLESTER, MIQUEL
Mention:No mention
RELATED PUBLICATIONS
Systemized structural predesign method for selective racks
Bove, O.; Casafont, M.; Ferrer, M.; Lopez Almansa, F.; Roure, F.
Journal of structural engineering (New York, N.Y.), ISSN: 0733-9445 (JCR Impact Factor-2020: 3.312; Quartil: Q2)
Publication date: 12/2020
Journal article

Comparison Between Two Types of Seismic Tests of Racking Systems
Bove, O.; Ferrer, M.; Lopez Almansa, F.; Roure, F.
ce/papers, ISSN: 2509-7075
Publication date: 09/2021
Journal article

Analytical design method for the improvement of steel structures stability
Bove, O.; Casafont, M.; Ferrer, M.; Lopez Almansa, F.; Roure, F.
ce/papers, ISSN: 2509-7075
Publication date: 09/2021
Journal article

Ductility improvement of adjustable pallet rack speed-lock connections: Experimental study
Bove, O.; Lopez Almansa, F.; Ferrer, M.; Roure, F.
Journal of constructional steel research , ISSN: 0143-974X (JCR Impact Factor-2020: 3.646; Quartil: Q1)
Publication date: 01/2022
Journal article

Numerical investigation on a seismic testing campaign on adjustable pallet rack speed-lock connections
Bove, O.; Ferrer, M.; Lopez Almansa, F.; Roure, F.
Engineering structures, ISSN: 0141-0296 (JCR Impact Factor-2021: 5.582; Quartil: Q1)
Publication date: 02/2022
Journal article

Comparison between two types of cyclic tests of rancking systems for seismic performance evaluation
9th European Conference on Steel and Composite Structures
Presentation date: 01/09/2021
Presentation of work at congresses

COMPARISON BETWEEN TWO TYPES OF CYCLIC TESTS OF RACKING SYSTEMS FOR SEISMIC PERFORMANCE EVALUATION
17th World Conference on Earthquake Engineering
Presentation date: 30/09/2021
Presentation of work at congresses

AUTHOR:MORENO MARTÍNEZ, LAURA
Title:Numerical modelling of viscoelastic flows based on a log-conformation formulation.
Reading date:22/09/2021
Director:CODINA ROVIRA, RAMON
Co-director:BAIGES AZNAR, JOAN
Mention:No mention
RELATED PUBLICATIONS
Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation
Moreno, L.; Codina, R.; Baiges, J.; Castillo, E.
Computer methods in applied mechanics and engineering, ISSN: 0045-7825 (JCR Impact Factor-2019: 5.763; Quartil: Q1)
Publication date: 09/2019
Journal article

Solution of transient viscoelastic flow problems approximated by a term-by-term VMS stabilized finite element formulation using time-dependent subgrid-scales
Moreno, L.; Codina, R.; Baiges, J.
Computer methods in applied mechanics and engineering, ISSN: 0045-7825 (JCR Impact Factor-2020: 6.756; Quartil: Q1)
Publication date: 08/2020
Journal article

Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem
Codina, R.; Moreno, L.
ESAIM. Mathematical modeling and numerical analysis. Modelisation mathématique, ISSN: 0764-583X (JCR Impact Factor-2019: 1.353; Quartil: Q2)
Publication date: 02/2021
Journal article

Stabilised variational multi-scale finite element formulations for viscoelastic fluids
Castillo, E.; Moreno, L.; Baiges, J.; Codina, R.
Archives of computational methods in engineering, ISSN: 1134-3060 (JCR Impact Factor-2019: 6.73; Quartil: Q1)
Publication date: 05/2021
Journal article

Numerical simulation of non-isothermal viscoelastic fluid flows using a VMS stabilized finite element formulation
Moreno, L.; Codina, R.; Baiges, J.
Journal of non-newtonian fluid mechanics, ISSN: 0377-0257 (JCR Impact Factor-2019: 2.538; Quartil: Q2)
Publication date: 10/2021
Journal article

AUTHOR:CORNEJO VELÁZQUEZ, ALEJANDRO
Title:A fully Lagrangian formulation for fluid-structure interaction between free-surface flows and multi-fracturing solids
Reading date:21/12/2020
Director:OÑATE IBAÑEZ DE NAVARRA, EUGENIO
Co-director:ZARATE ARAIZA, JOSE FRANCISCO
Mention:No mention
RELATED PUBLICATIONS
Analysis of the mock-up of a reactor containment building: comparison with experimental results
Jimenez, S.; Cornejo, A.; Barbu, L.; Oller, S.; Barbat, A. H.
Nuclear engineering and design, ISSN: 0029-5493 (JCR Impact Factor-2020: 1.869; Quartil: Q2)
Publication date: 04/2020
Journal article

Combination of an adaptive remeshing technique with a coupled FEM–DEM approach for analysis of crack propagation problems
Cornejo, A.; Mataix, V.; Zarate, J.; Oñate, E.
Computational particle mechanics, ISSN: 2196-4378 (JCR Impact Factor-2020: 2.105; Quartil: Q2)
Publication date: 07/2020
Journal article

Failure pressure analysis of a nuclear reactor prestressed concrete containment building
Jimenez, S.; Cornejo, A.; Barbu, L.; Barbat, A. H.; Oller, S.
Engineering structures, ISSN: 0141-0296 (JCR Impact Factor-2019: 3.548; Quartil: Q1)
Publication date: 06/2021
Journal article

A fully Lagrangian formulation for fluid-structure interaction problems with free-surface flows and fracturing solids
Cornejo, A.; Franci, A.; Zarate, J.; Oñate, E.
Computers and structures, ISSN: 0045-7949 (JCR Impact Factor-2019: 3.664; Quartil: Q1)
Publication date: 07/2021
Journal article

Analysis of the VeRCoRs mock-up of a reactor containment building by means of a constitutive serial-parallel rule of mixtures
Restitution Workshop of the VeRCoRs 2018 benchmark
Presentation date: 28/08/2018
Presentation of work at congresses

Modeling limit situations by the action of fluids over breakable human-built structures with the Particle Finite Element Method
3rd International Conference on Computational Engineering and Science for Safety and Environmental Problems (COMPSAFE2020)
Presentation date: 08/12/2020
Presentation of work at congresses

Nonlinear analysis of a nuclear plant containment structure
14th World Congress in Computational Mechanics and 8th European Congress on Computational Methods in Applied Sciences and Engineering
Presentation date: 01/2021
Presentation of work at congresses

AUTHOR:TELLO GUERRA, ALEXIS
Title:Fluid Structure Interaction by means of Reduced Order Models.
Reading date:10/07/2020
Director:CODINA ROVIRA, RAMON
Co-director:BAIGES AZNAR, JOAN
Mention:No mention
RELATED PUBLICATIONS
Fluid structure interaction by means of variational multiscale reduced order models
Tello, A.; Codina, R.; Baiges, J.
International journal for numerical methods in engineering, ISSN: 1097-0207 (JCR Impact Factor-2020: 3.477; Quartil: Q1)
Publication date: 06/2020
Journal article

Field-to-field coupled fluid structure interaction: a reduced order model study
Tello, A.; Codina, R.
International journal for numerical methods in engineering, ISSN: 1097-0207 (JCR Impact Factor-2019: 2.866; Quartil: Q1)
Publication date: 01/2021
Journal article

AUTHOR:CELIGUETA JORDANA, MIGUEL ANGEL
Title:A particle finite element method for fluid-related problems in civil engineering.
Reading date:14/11/2019
Director:OÑATE IBAÑEZ DE NAVARRA, EUGENIO
Mention:No mention
RELATED PUBLICATIONS
Development of new lagrangian computational methods for ice-ship interaction problems: NICESHIP project
Garcia, J.; Oñate, E.; Serván, B.; Celigueta, M.A.; Latorre, S.; Colom, J.
Springer
Publication date: 29/02/2020
Book chapter

An accurate nonlocal bonded discrete element method for nonlinear analysis of solids: application to concrete fracture tests
Celigueta, M.A.; Latorre, S.; Arrufat, F.; Oñate, E.
Computational particle mechanics, ISSN: 2196-4378 (JCR Impact Factor-2020: 2.105; Quartil: Q2)
Publication date: 05/2020
Journal article

Simulations of landslide wave generation and propagation using the particle finite element method
Mulligan, R.; Franci, A.; Celigueta, M.A.; Take, William Andrew
Journal of geophysical research: oceans, ISSN: 2169-9291 (JCR Impact Factor-2020: 3.405; Quartil: Q1)
Publication date: 06/2020
Journal article

Partitioned strong coupling of discrete elements with large deformation structural finite elements to model impact on highly flexible tension structures
Sautter, K.; Teschemacher, T.; Celigueta, M.A.; Bucher, P.; Bletzinger, K.; Wüchner, R.
Advances in Civil Engineering, ISSN: 1687-8094 (JCR Impact Factor-2020: 1.924; Quartil: Q3)
Publication date: 11/2020
Journal article

Research projects

START DATEEND DATEACTIVITYFINANCING ENTITY
01/09/202131/08/2024Printing pattern based and MultiScale enhanced performance analysis of advanced Additive Manufacturing componentsMINECO
01/09/202131/08/2024Obtención de prótesis para sustitución de tejido óseo mediante impresión 3D por extrusión y posterior sinterizadoAGENCIA ESTATAL DE INVESTIGACION
01/09/202131/08/2024Recursos Multidisciplinares para el Diagnóstico Sísmico. Microzonación y Daño.AGENCIA ESTATAL DE INVESTIGACION
30/07/202130/07/2024Proyecto ADRIANO: Desarrollo de una tecnología de construcción 4.0 basda en la impresión 3DAgència per la Competitivitat de l'Empresa (ACCIÓ)
26/07/202130/09/2023Desenvolupament d'un conjunt d'estudis relacionats amb el disseny de cobertes corbades de grans llums de xapes trapezoidals d'acer conformades en fred.ING.Y CONSTRUCCIÓN DEL PERFIL S.A.
01/07/202131/12/2022PIPLATES - Plataforma de Predicció Territorial - 2ª Resolució (Reto 0-1 Avaluació probabilista de el risc sísmic)Generalitat de Catalunya - Departament de la Vicepresidència i de Polítiques Digitals i Territori
01/06/202130/06/2022Desarrollo de un programa informático de soporte al diseño de arcos de chapa trapezoidal de acero conformado en frío. Módulos: análisis, preproceso, postproceso, generador de hipótesis de carga y geneMETALPERFIL, SA
15/03/202115/03/2024Comportament sismo-resistent de connexions en sistemes de construcció industrialitzadaAGAUR. Agència de Gestió d'Ajuts Universitaris i de Recerca
01/03/202101/03/2024CODA: Next generation of industrial aerodynamic simulation codeMinisterio de Ciencia e Innovación; European Commission
01/03/202101/03/2024Enabling dynamic and Intelligent workflows in the future EuroHPCecosystem (eFlows4HPC)European Commission
14/01/202114/01/2021PARACHUTES: a computer program for calculating ram-air parachutes
01/01/202131/12/2023FIBRE COMPOSITE MANUFACTURING TECHNOLOGIES FOR THE AUTOMATION AND MODULAR CONSTRUCTION IN SHIPYARDSEuropean Commission
01/01/202131/12/2023Development, engineering, production and life-cycle management of improved FIBRE-based material solutions for structure and functional components of large offshore wind enerGY and tidal power platformEuropean Commission
01/01/202130/06/2021Pi-Plates – Plataforma per a la Gestió Predictiva del Territori. REPTE 0 - Avaluació probabilista de el risc sísmicGeneralitat Catalunya
01/01/202131/12/2024Stability and Sensitivity Methods for Flow Control and Industrial DesignEuropean Commission
23/11/202023/11/2023Recerca de nous materials compostos verds per a la valorització de subproductes del cànem VALSUCANEMAgència per la Competitivitat de l'Empresa (ACCIÓ)
10/11/202010/11/2020XMC
27/08/202030/08/2020Evaluation of a method for the simulation of Low impedence faults in power equipmentSiemens AG
23/07/202022/01/2022Design tool for optimal performance in Additive Manufacturing (Add2Man)Agència de Gestió d'Ajuts Universitaris i de Recerca (Agaur)
07/07/202007/07/2020Dispositivo y método formador en continuo de tubos compuestos rígidos de geometría variable
01/06/202031/10/2021Bringing Digital Twins to the Edge for mass Industry 4.0 applicationsEuropean Commission
01/01/202031/12/2022Assessment on alternative aviation fuels developmentEuropean Comission
01/01/202031/12/2020R+D en components estructurals de prestatgeries 2020MECALUX, S.A.
01/01/202031/12/2023An Advanced Circular and Agile Manufacturing Ecosystem based on rapid reconfigurable manufacturing process and individualized consumer preferencesEuropean Commission
01/01/202031/12/2021Mantenimiento y conservación del patrimonio construido – MANTREDAgencia Estatal de Investigación
31/12/201931/12/2022Tecnologies de Làser i altra Llum (Agrupació BASE3D)Generalitat de Catalunya. Departament de Governació i Administracions Públiques
20/11/201920/11/2021Desarrollo de una tecnología de integración de marcadores magnéticos en la calzada para permitir el guiado de los vehículos autónomosSORIGUE, S.A.
01/11/201930/04/2022Development of a new generation of cost-efficient polymeric fiber rebars and behaviour assessment in concrete matrices, using innovative computation proceduresSAUDI ARAMCO TECHNOLOGIES COMPANY
01/11/201930/04/2021Computational design and prototyping of acoustic metamaterials for target ambient noise reductionEuropean Research Council
01/10/201931/12/2021Participació en el projecte HYBRIDCONCOMAZVI, S.A.
05/08/201931/08/2019Development od reduced order models for the simulation of the heat transfer problemsSiemens AG
12/07/201912/01/2022REDUVE Refuerzo de estructuras frente a acciones dinámicas con compuestos de malla vegetalAZVI, S.A.
05/06/201904/10/2019Asistencia técnia para la ejecución de ensayos de corrosión de muestras y análisis de la seguridad de la víaCOMSA
01/06/201931/12/2019Desenvolupament d'activitats de recerca i formació per a la millora de la seguretat de les edificacions enfront de sisme a la regió de chiapas, mèxicCentre Cooperació per al Desenvolupament
24/05/201924/05/2019Elemento estructural híbrido
01/05/201901/02/2021Nou sistema de connexió acer-formigó en pilars tubulars mixtos per la millora de la capacitat de càrrega i resistència al foc de l'estructura. STCC.AGAUR. Agència de Gestió d'Ajuts Universitaris i de Recerca
01/05/201901/09/2020Developement of Molding SolverAltair
01/04/201930/09/2019Offer for the construction of Reduced Order Modelling infrastructure within Kratos – Application to Conjugate Heat Transfer within Kratos – Application to Conjugate Heat TransferSiemens AG
01/04/201930/09/2019SIEMENS: Offer for the exploration of a simplified contact solver within small displacement structural analysisSiemens AG
01/03/201928/02/2020DESENVOLUPAMENT D’ACTIVITYS DE RECERCA I FORMACIÓ PER A LA MILLORA DE LA SEGURETAT DE LES EDIFICACIONS ENFRONT DE SISME A LA REGIÓ DE CHIAPAS (MÈXIC)Centre Cooperació per al Desenvolupament
08/01/201930/09/2019Space Rider Descent SystemCIMSA Ingeniería de sistemas
01/01/201931/12/2019R+D en components estructurals de prestatgeries 2019MECALUX, S.A.
01/01/201931/12/2021Evaluación multinivel de la vulnerabilidad sísmica y mitigación de riesgo de edificios de obra de fábrica para centros urbanos históricos resilentesAGENCIA ESTATAL DE INVESTIGACION
01/01/201931/12/2021Optimización topológica de estructuras sujetas a interacción fluido-estructura.Ministerio de Ciencia e Innovación
01/01/201931/12/2021001-P-001646_BASE 3DGENCAT - DEPT. D'EMPRESA I OCUPACIO
01/01/201931/12/2021Advanced Multi-scAle moDEling of coupled mass transport for improving water management in fUel cellSMinisterio de Ciencia e Innovación
27/12/201823/04/2019Asistencia técnica para la realización de ensayos singulares sobre limitadores de cargaSENER INGENIERÍA DE SISTEMAS S.A.
24/10/201830/04/2019Contrato de apoyo técnico en la medición de esfuerzos de flexión sobre el mástil de una vela rígidaBOUND 4 BLUE SL
01/08/201809/08/2019Study in the exploration of Kratos Thermo-Fluid capabilities for conjugate heat transfer problemsSiemens AG
01/06/201830/11/2021EXAscale Quantification of Uncertainties for Technology and Science SimulationEuropean Commission
01/06/201831/05/2021ExaQute, EXAscale Quantification of Uncertainties for Technology and Science SimulationEuropean Comission
01/03/201831/03/2021Filtered adjoint-based techniques for mesh optimization to enable predictive wind field assessment in complex environmentsTechnische Universität München
01/01/201830/06/2019CATALOGEuropean Research Council
01/01/201801/01/2021Computational design of Acoustic and Mechanical MetamaterialsMINECO. Secretaria de Estado de Investigación, Desarrollo e Innovación.
01/01/201831/12/2018Anàlisi, assaig, caracterització i millora de components estructurals de presetatgeries metàl.liques 2018MECALUX, S.A.
01/01/201831/12/2019Herramienta numérica-experimental para la determinación del estado de integridad de las estructurasGeotécnia y Cimientos, S.A. (GEOCISA)
01/01/201820/03/2021Ecosistema d’R+D+i per la implementació i adopció de la Fabricació Additiva / Impressió 3D a la indústria del transport (TRANSPORT)ACCIÓ, Generalitat de Catalunya
01/01/201830/11/2018Delivery routes optimizationUniversitat Politècnica de Catalunya
01/01/201831/12/2020ANACONDA Brain®, micro-catéter de acceso distal para trombectomías cerebrales y tratamiento del accidente cerebrovascular isquémicoMinisterio de Ciencia e Innovación
01/01/201820/03/2021Ecosistema d'R+D+i per la implementació i adopció de la Fabricació Additiva /Impressió 3D a fabricació de productes indistrials i als processos industrials de produccióACCIÓ, Generalitat de Catalunya
01/01/201831/12/2020Marco Computacional para la Fabricación Aditiva de Componentes de Aleaciones de TitanioMinisterio de Ciencia e Innovación
25/10/201731/12/2018Disseny òptim plint de via fèrriaRAILTECH SUFETRA S.A.
01/10/201730/03/2020COMPOSITO (CDTI)AZVI, S.A.
01/09/201731/12/2017Variational Multi-Scale error estimators for Adaptive Mesh Refinement simulations of turbulent and aeroacoustic flows.RES - Red Española de Supercomputacion
01/09/201728/02/2018Transferència de tecnologia en assajos i simulació numèrica d'estructures soldades per al sector ferroviariCM4 ENGINYERIA S.A.
01/07/201731/12/2020Productes i Processos Industrials en l’entorn d’adopció de la Fabricació Additiva (PRO2)ACCIÓ, Generalitat de Catalunya
01/06/201731/05/2020Engineering, production and life-cycle management for the complete construction of large-length FIBRE-based SHIPs (FIBRESHIP)European Commission
01/06/201731/05/2020Advanced Concepts for Aero-structures with Integrated Antennas and Sensors (ACASIAS)European Commission
30/05/201730/11/2018TUBOTEX (CDTI)SORIGUE, S.A.
01/05/201731/12/2017PRACE Project - Computational tools for adaptive compressible flow solversPRACE-Parnership for Advanced Computing in Europe
01/03/201715/11/2020Predicción de fuentes de ruido aerodinámico (Aeroacústica) utilizando CFD (Computational Fluid Dynamics). Validación experimental.AGAUR. Agència de Gestió d'Ajuts Universitaris i de Recerca
01/03/201730/04/2017First wall mock-up: Simulation of the manufacturing chainLEADING
01/01/201731/12/2017Anàlisi, assaig, caracterització i millora de components estructurals de presetatgeries metàl.liquesMECALUX, S.A.
01/01/201731/12/2021ICREA ACADEMIA 2016-03INSTITUCIO CAT DE RECERCA I

Teaching staff and research groups

Research projects

START DATEEND DATEACTIVITYFINANCING ENTITY
01/09/202131/08/2024Printing pattern based and MultiScale enhanced performance analysis of advanced Additive Manufacturing componentsMINECO
01/09/202131/08/2024Obtención de prótesis para sustitución de tejido óseo mediante impresión 3D por extrusión y posterior sinterizadoAGENCIA ESTATAL DE INVESTIGACION
01/09/202131/08/2024Recursos Multidisciplinares para el Diagnóstico Sísmico. Microzonación y Daño.AGENCIA ESTATAL DE INVESTIGACION
30/07/202130/07/2024Proyecto ADRIANO: Desarrollo de una tecnología de construcción 4.0 basda en la impresión 3DAgència per la Competitivitat de l'Empresa (ACCIÓ)
26/07/202130/09/2023Desenvolupament d'un conjunt d'estudis relacionats amb el disseny de cobertes corbades de grans llums de xapes trapezoidals d'acer conformades en fred.ING.Y CONSTRUCCIÓN DEL PERFIL S.A.
01/07/202131/12/2022PIPLATES - Plataforma de Predicció Territorial - 2ª Resolució (Reto 0-1 Avaluació probabilista de el risc sísmic)Generalitat de Catalunya - Departament de la Vicepresidència i de Polítiques Digitals i Territori
01/06/202130/06/2022Desarrollo de un programa informático de soporte al diseño de arcos de chapa trapezoidal de acero conformado en frío. Módulos: análisis, preproceso, postproceso, generador de hipótesis de carga y geneMETALPERFIL, SA
15/03/202115/03/2024Comportament sismo-resistent de connexions en sistemes de construcció industrialitzadaAGAUR. Agència de Gestió d'Ajuts Universitaris i de Recerca
01/03/202101/03/2024CODA: Next generation of industrial aerodynamic simulation codeMinisterio de Ciencia e Innovación; European Commission
01/03/202101/03/2024Enabling dynamic and Intelligent workflows in the future EuroHPCecosystem (eFlows4HPC)European Commission
14/01/202114/01/2021PARACHUTES: a computer program for calculating ram-air parachutes
01/01/202131/12/2023FIBRE COMPOSITE MANUFACTURING TECHNOLOGIES FOR THE AUTOMATION AND MODULAR CONSTRUCTION IN SHIPYARDSEuropean Commission
01/01/202131/12/2023Development, engineering, production and life-cycle management of improved FIBRE-based material solutions for structure and functional components of large offshore wind enerGY and tidal power platformEuropean Commission
01/01/202130/06/2021Pi-Plates – Plataforma per a la Gestió Predictiva del Territori. REPTE 0 - Avaluació probabilista de el risc sísmicGeneralitat Catalunya
01/01/202131/12/2024Stability and Sensitivity Methods for Flow Control and Industrial DesignEuropean Commission
23/11/202023/11/2023Recerca de nous materials compostos verds per a la valorització de subproductes del cànem VALSUCANEMAgència per la Competitivitat de l'Empresa (ACCIÓ)
10/11/202010/11/2020XMC
27/08/202030/08/2020Evaluation of a method for the simulation of Low impedence faults in power equipmentSiemens AG
23/07/202022/01/2022Design tool for optimal performance in Additive Manufacturing (Add2Man)Agència de Gestió d'Ajuts Universitaris i de Recerca (Agaur)
07/07/202007/07/2020Dispositivo y método formador en continuo de tubos compuestos rígidos de geometría variable
01/06/202031/10/2021Bringing Digital Twins to the Edge for mass Industry 4.0 applicationsEuropean Commission
01/01/202031/12/2022Assessment on alternative aviation fuels developmentEuropean Comission
01/01/202031/12/2020R+D en components estructurals de prestatgeries 2020MECALUX, S.A.
01/01/202031/12/2023An Advanced Circular and Agile Manufacturing Ecosystem based on rapid reconfigurable manufacturing process and individualized consumer preferencesEuropean Commission
01/01/202031/12/2021Mantenimiento y conservación del patrimonio construido – MANTREDAgencia Estatal de Investigación
31/12/201931/12/2022Tecnologies de Làser i altra Llum (Agrupació BASE3D)Generalitat de Catalunya. Departament de Governació i Administracions Públiques
20/11/201920/11/2021Desarrollo de una tecnología de integración de marcadores magnéticos en la calzada para permitir el guiado de los vehículos autónomosSORIGUE, S.A.
01/11/201930/04/2022Development of a new generation of cost-efficient polymeric fiber rebars and behaviour assessment in concrete matrices, using innovative computation proceduresSAUDI ARAMCO TECHNOLOGIES COMPANY
01/11/201930/04/2021Computational design and prototyping of acoustic metamaterials for target ambient noise reductionEuropean Research Council
01/10/201931/12/2021Participació en el projecte HYBRIDCONCOMAZVI, S.A.
05/08/201931/08/2019Development od reduced order models for the simulation of the heat transfer problemsSiemens AG
12/07/201912/01/2022REDUVE Refuerzo de estructuras frente a acciones dinámicas con compuestos de malla vegetalAZVI, S.A.
05/06/201904/10/2019Asistencia técnia para la ejecución de ensayos de corrosión de muestras y análisis de la seguridad de la víaCOMSA
01/06/201931/12/2019Desenvolupament d'activitats de recerca i formació per a la millora de la seguretat de les edificacions enfront de sisme a la regió de chiapas, mèxicCentre Cooperació per al Desenvolupament
24/05/201924/05/2019Elemento estructural híbrido
01/05/201901/02/2021Nou sistema de connexió acer-formigó en pilars tubulars mixtos per la millora de la capacitat de càrrega i resistència al foc de l'estructura. STCC.AGAUR. Agència de Gestió d'Ajuts Universitaris i de Recerca
01/05/201901/09/2020Developement of Molding SolverAltair
01/04/201930/09/2019Offer for the construction of Reduced Order Modelling infrastructure within Kratos – Application to Conjugate Heat Transfer within Kratos – Application to Conjugate Heat TransferSiemens AG
01/04/201930/09/2019SIEMENS: Offer for the exploration of a simplified contact solver within small displacement structural analysisSiemens AG
01/03/201928/02/2020DESENVOLUPAMENT D’ACTIVITYS DE RECERCA I FORMACIÓ PER A LA MILLORA DE LA SEGURETAT DE LES EDIFICACIONS ENFRONT DE SISME A LA REGIÓ DE CHIAPAS (MÈXIC)Centre Cooperació per al Desenvolupament
08/01/201930/09/2019Space Rider Descent SystemCIMSA Ingeniería de sistemas
01/01/201931/12/2019R+D en components estructurals de prestatgeries 2019MECALUX, S.A.
01/01/201931/12/2021Evaluación multinivel de la vulnerabilidad sísmica y mitigación de riesgo de edificios de obra de fábrica para centros urbanos históricos resilentesAGENCIA ESTATAL DE INVESTIGACION
01/01/201931/12/2021Optimización topológica de estructuras sujetas a interacción fluido-estructura.Ministerio de Ciencia e Innovación
01/01/201931/12/2021001-P-001646_BASE 3DGENCAT - DEPT. D'EMPRESA I OCUPACIO
01/01/201931/12/2021Advanced Multi-scAle moDEling of coupled mass transport for improving water management in fUel cellSMinisterio de Ciencia e Innovación
27/12/201823/04/2019Asistencia técnica para la realización de ensayos singulares sobre limitadores de cargaSENER INGENIERÍA DE SISTEMAS S.A.
24/10/201830/04/2019Contrato de apoyo técnico en la medición de esfuerzos de flexión sobre el mástil de una vela rígidaBOUND 4 BLUE SL
01/08/201809/08/2019Study in the exploration of Kratos Thermo-Fluid capabilities for conjugate heat transfer problemsSiemens AG
01/06/201830/11/2021EXAscale Quantification of Uncertainties for Technology and Science SimulationEuropean Commission
01/06/201831/05/2021ExaQute, EXAscale Quantification of Uncertainties for Technology and Science SimulationEuropean Comission
01/03/201831/03/2021Filtered adjoint-based techniques for mesh optimization to enable predictive wind field assessment in complex environmentsTechnische Universität München
01/01/201830/06/2019CATALOGEuropean Research Council
01/01/201801/01/2021Computational design of Acoustic and Mechanical MetamaterialsMINECO. Secretaria de Estado de Investigación, Desarrollo e Innovación.
01/01/201831/12/2018Anàlisi, assaig, caracterització i millora de components estructurals de presetatgeries metàl.liques 2018MECALUX, S.A.
01/01/201831/12/2019Herramienta numérica-experimental para la determinación del estado de integridad de las estructurasGeotécnia y Cimientos, S.A. (GEOCISA)
01/01/201820/03/2021Ecosistema d’R+D+i per la implementació i adopció de la Fabricació Additiva / Impressió 3D a la indústria del transport (TRANSPORT)ACCIÓ, Generalitat de Catalunya
01/01/201830/11/2018Delivery routes optimizationUniversitat Politècnica de Catalunya
01/01/201831/12/2020ANACONDA Brain®, micro-catéter de acceso distal para trombectomías cerebrales y tratamiento del accidente cerebrovascular isquémicoMinisterio de Ciencia e Innovación
01/01/201820/03/2021Ecosistema d'R+D+i per la implementació i adopció de la Fabricació Additiva /Impressió 3D a fabricació de productes indistrials i als processos industrials de produccióACCIÓ, Generalitat de Catalunya
01/01/201831/12/2020Marco Computacional para la Fabricación Aditiva de Componentes de Aleaciones de TitanioMinisterio de Ciencia e Innovación
25/10/201731/12/2018Disseny òptim plint de via fèrriaRAILTECH SUFETRA S.A.
01/10/201730/03/2020COMPOSITO (CDTI)AZVI, S.A.
01/09/201731/12/2017Variational Multi-Scale error estimators for Adaptive Mesh Refinement simulations of turbulent and aeroacoustic flows.RES - Red Española de Supercomputacion
01/09/201728/02/2018Transferència de tecnologia en assajos i simulació numèrica d'estructures soldades per al sector ferroviariCM4 ENGINYERIA S.A.
01/07/201731/12/2020Productes i Processos Industrials en l’entorn d’adopció de la Fabricació Additiva (PRO2)ACCIÓ, Generalitat de Catalunya
01/06/201731/05/2020Engineering, production and life-cycle management for the complete construction of large-length FIBRE-based SHIPs (FIBRESHIP)European Commission
01/06/201731/05/2020Advanced Concepts for Aero-structures with Integrated Antennas and Sensors (ACASIAS)European Commission
30/05/201730/11/2018TUBOTEX (CDTI)SORIGUE, S.A.
01/05/201731/12/2017PRACE Project - Computational tools for adaptive compressible flow solversPRACE-Parnership for Advanced Computing in Europe
01/03/201715/11/2020Predicción de fuentes de ruido aerodinámico (Aeroacústica) utilizando CFD (Computational Fluid Dynamics). Validación experimental.AGAUR. Agència de Gestió d'Ajuts Universitaris i de Recerca
01/03/201730/04/2017First wall mock-up: Simulation of the manufacturing chainLEADING
01/01/201731/12/2017Anàlisi, assaig, caracterització i millora de components estructurals de presetatgeries metàl.liquesMECALUX, S.A.
01/01/201731/12/2021ICREA ACADEMIA 2016-03INSTITUCIO CAT DE RECERCA I

Quality

The Validation, Monitoring, Modification and Accreditation Framework (VSMA Framework) for official degrees ties the quality assurance processes (validation, monitoring, modification and accreditation) carried out over the lifetime of a course to two objectives—the goal of establishing coherent links between these processes, and that of achieving greater efficiency in their management—all with the overarching aim of improving programmes.

Validation

Monitoring

Accreditation

    Registry of Universities, Centers and Degrees (RUCT)

    Indicators

    Up