Skip to content

You are here: Home / Doctoral programmes / Photonics

Photonics

Photonics is the science that studies light and its generation, propagation, manipulation and interaction with matter. The discipline produces multidisciplinary technology with applications in communications, industry, nanotechnology, biology, medicine and other fields. In recent decades, photonics has given rise to a myriad of applications that have a positive impact on our lives, even at the most everyday level. Examples of photonic solutions to present-day challenges include modern fibre optics–based communications systems, optical diagnostic and therapeutic tools used in medicine, laser-based production methods, metrology and optical sensors, and photovoltaic energy.

.The doctoral programme in Photonics of the Universitat Politècnica de Catalunya (UPC) is delivered by the Institute of Photonic Sciences (ICFO) within the framework of the UPC Doctoral School. The ICFO is a research centre dedicated to the study of light sciences and technologies and has been recognised as a Severo Ochoa Centre of Excellence. Founded in 2002 by the Government of Catalonia and the UPC, the ICFO also hosts ambitious patronage programmes funded by the Cellex and Mir-Puig foundations of Barcelona. The Institute has a threefold mission: frontier research, knowledge and technology transfer, and postgraduate training, mainly at the doctoral level. The ICFO is currently one of the leading centres in the world in its field.

Theses are completed in the four research areas at the core of the doctoral programme in Photonics: biomedical photonics, quantum optics, nonlinear optics and nanophotonics. These four research areas focus primarily on photonic applications in healthcare, renewable energies and information technologies. Research is carried out within the framework of long-term programmes and medium-term projects in a range of fields, including quantum information technologies, advanced screens, nanophotonic devices, graphene photonics, remote sensors, solar cells, optoelectronics, integrated optics, ultrafast optics, super-resolution imaging techniques, and biomedical technologies for diagnosis and therapy.

COORDINATOR

Sewell, Robert

CONTACT

Natalia García Tusquellas
The Institute of Photonic Sciences (ICFO)
Av. Carl Friedrich Gauss, 3
08860 Castelldefels

Tel: (+34) 93 554 22 10
E-mail: academicaffairs@icfo.eu

Programme website

General information

Access profile

The doctoral programme in Photonics is designed for students with outstanding academic records at the international level who wish to complete a doctoral project in a field related to photonics.

With respect to entrance qualifications, it should be noted that photonics is a very broad discipline and that the ICFO is made up of a number of research groups that work in the various branches of the photonic sciences. Accordingly, the doctoral programme in Photonics is open to applicants with a wide range of qualifications, including degrees in physics; electronic, electrical, materials and telecommunications engineering; mathematics, chemistry, biology, bioengineering and biophysics.

As for language skills, the ICFO is a research institute with a strongly international character and English is the language used for everyday communication. Students admitted to the doctoral programme in Photonics must therefore have a high level of written and spoken English.

As for career goals, the doctoral programme in Photonics admits both students who wish to pursue academic careers and those aiming to become future leaders in knowledge and technology transfer or R&D in the business environment.

When it comes to personal characteristics, we are looking for students with high potential, motivation and the drive to carry out a project of excellence at the highest international level.

Output profile

Doctoral candidates who complete a doctoral degree will have acquired the following competencies, which are needed to carry out quality research (Royal Decree 99/2011, of 28 January, which regulates official doctoral studies):

a) A systematic understanding of the field of study and a mastery of the research skills and methods related to the field.
b) An ability to conceive, design or create, put into practice and adopt a substantial process of research or creation.
c) An ability to contribute to pushing back the frontiers of knowledge through original research.
d) A capacity for critical analysis and an ability to assess and summarise new and complex ideas.
e) An ability to communicate with the academic and scientific community and with society in general as regards their fields of knowledge in the manner and languages that are typical of the international scientific community to which they belong.
f) An ability to foster scientific, technological, social, artistic and cultural progress in academic and professional contexts within a knowledge-based society.

The award of a doctoral degree must equip the graduate for work in a variety of settings, especially those requiring creativity and innovation. Doctoral graduates must have at least acquired the personal skills needed to:

a) Develop in contexts in which there is little specific information.
b) Find the key questions that must be answered to solve a complex problem.
c) Design, create, develop and undertake original, innovative projects in their field.
d) Work as part of a team and independently in an international or multidisciplinary context.
e) Integrate knowledge, deal with complexity and make judgements with limited information.
f) Offer criticism on and intellectually defend solutions.

Finally, with respect to competencies, doctoral students must:
a) have acquired advanced knowledge at the frontier of their discipline and demonstrated, in the context of internationally recognised scientific research, a deep, detailed and well-grounded understanding of theoretical and practical issues and scientific methodology in one or more research fields;
b) have made an original and significant contribution to scientific research in their field of expertise that has been recognised as such by the international scientific community;
c) have demonstrated that they are capable of designing a research project that serves as a framework for carrying out a critical analysis and assessment of imprecise situations, in which they are able to apply their contributions, expertise and working method to synthesise new and complex ideas that yield a deeper knowledge of the research context in which they work;
d) have developed sufficient autonomy to set up, manage and lead innovative research teams and projects and scientific collaborations (both national and international) within their subject area, in multidisciplinary contexts and, where appropriate, with a substantial element of knowledge transfer;
e) have demonstrated that they are able to carry out their research activity in a socially responsible manner and with scientific integrity;
f) have demonstrated, within their specific scientific context, that they are able to make cultural, social or technological advances and promote innovation in all areas within a knowledge-based society;
g) have demonstrated that they are able to participate in scientific discussions at the international level in their field of expertise and disseminate the results of their research activity to audiences of all kinds.

Number of places

30

Duration of studies and dedication regime

Duration
The maximum period of study for full-time doctoral studies is three years, counted from the date of admission to the programme to the date of submission of the doctoral thesis. The academic committee of the doctoral programme may authorise a doctoral candidate to pursue doctoral studies on a part-time basis. In this case, the maximum period of study is five years, counting from the date of admission to the programme to the date of submission of the doctoral thesis. For calculating these periods, the date of admission is considered to be the date of the first enrolment for tutorials, and the date of submission the moment in which the Doctoral School officially deposits the doctoral thesis.

For full-time doctoral candidates, the minimum period of study is two years, counted from the date of an applicant's admission to the programme until the date on which the doctoral thesis is deposited; for part-time doctoral candidates it is four years. When there are justified grounds for doing so, and the thesis supervisor and academic tutor have given their authorisation, doctoral candidates may request that the academic committee of their doctoral programme exempt them from the minimum period of study requirement.

The calculation of periods of study will not include periods of absence due to illness, pregnancy or any other reason provided for in the regulations in force. Students who find themselves in any of these circumstances must notify the academic committee of the doctoral programme, which, where appropriate, must inform the Doctoral School. Doctoral candidates may also temporarily withdraw from the programme for up to one year, and this period may be extended for an additional year. Doctoral candidates who wish to interrupt their studies must submit a justified request to the academic committee of the doctoral programme, which will decide whether or not to approve the request. Each programme will establish conditions for readmission to doctoral studies.

Extension
If full-time doctoral candidates have not applied to deposit their thesis by the end of the three-year period of study, the academic committee of the programme may authorise an extension of up to one year. In exceptional circumstances, a further one-year extension may be granted, subject to the conditions established by the corresponding doctoral programme. In the case of part-time doctoral candidates, an extension of two years may be authorised. In both cases, in exceptional circumstances a further one-year extension may be granted by the Doctoral School's Standing Committee, upon the submission of a reasoned application by the academic committee of the doctoral programme.

Dismissal from the doctoral programme
A doctoral candidate may be dismissed from a doctoral programme for the following reasons:

  • The doctoral candidate submitting a justified application to withdraw from the programme.
  • The maximum period of study and of extensions thereof ending.
  • The doctoral candidate not having enrolled every academic year (unless he or she has been authorised to temporarily withdraw).
  • The doctoral candidate failing two consecutive assessments.
  • The doctoral candidate having disciplinary proceedings filed against him or her that rule that he or she must be dismissed from the UPC.

Dismissal from the programme implies that doctoral candidates cannot continue studying at the UPC and the closing of their academic record. This notwithstanding, they may apply to the academic committee of the programme for readmission and the committee must reevaluate them in accordance with the criteria established in the regulations.

Enrollment aid

The ICFO and the professors involved in the doctoral programme are committed to ensuring that all doctoral students receive a grant and/or salary that allows them to work on their doctoral thesis full-time. The grants provided cover enrolment fees.

Organization

COORDINATOR:
ACADEMIC COMMISSION OF THE PROGRAM:
STRUCTURAL UNITS:
  • Institute of Photonic Sciences (PROMOTORA)
Specific URL of the doctoral program:
http://phd.icfo.eu/

CONTACT:

Natalia García Tusquellas
The Institute of Photonic Sciences (ICFO)
Av. Carl Friedrich Gauss, 3
08860 Castelldefels

Tel: (+34) 93 554 22 10
E-mail: academicaffairs@icfo.eu


Agreements with other institutions

The ICFO has collaboration agreements in effect with a significant number of companies, including Leica Microsystems, Corning, Nikon-Izasa Grupo Sorigué, Accelerate Diagnostics, S.L., Fyla All-Fiber Ultrafast Lasers and GRAPHENEA. The Institute also participates in networks of excellence (Euro-BioImaging, Laserlab Europe, Corbel, etc.) and coordinates various Graphene Flagship and Quantum Flagship projects under the EU's Horizon 2020 Programme.

Access, admission and registration

Access profile

The doctoral programme in Photonics is designed for students with outstanding academic records at the international level who wish to complete a doctoral project in a field related to photonics.

With respect to entrance qualifications, it should be noted that photonics is a very broad discipline and that the ICFO is made up of a number of research groups that work in the various branches of the photonic sciences. Accordingly, the doctoral programme in Photonics is open to applicants with a wide range of qualifications, including degrees in physics; electronic, electrical, materials and telecommunications engineering; mathematics, chemistry, biology, bioengineering and biophysics.

As for language skills, the ICFO is a research institute with a strongly international character and English is the language used for everyday communication. Students admitted to the doctoral programme in Photonics must therefore have a high level of written and spoken English.

As for career goals, the doctoral programme in Photonics admits both students who wish to pursue academic careers and those aiming to become future leaders in knowledge and technology transfer or R&D in the business environment.

When it comes to personal characteristics, we are looking for students with high potential, motivation and the drive to carry out a project of excellence at the highest international level.

Access requirements

Applicants must hold a Spanish bachelor’s degree or equivalent and a Spanish master’s degree or equivalent, provided they have completed a minimum of 300 ECTS credits on the two degrees (Royal Decree 43/2015, of 2 February)

In addition, the following may apply:

  • Holders of an official degree awarded by a university in Spain or any other country in the European Higher Education Area, pursuant to the provisions of Article 16 of Royal Decree 1393/2007, of 29 October, which establishes official university course regulations, who have completed a minimum of 300 ECTS credits on official university degrees, of which at least 60 must be at the master's degree level.
  • Holders of an official Spanish bachelor’s degree comprising at least 300 credits, as provided for by EU regulations. Holder of degrees of this kind must complete bridging courses unless the curriculum of the bachelor’s degree in question included research training credits equivalent in value to those which would be earned on a master's degree.
  • Holders of an official university qualification who, having passed the entrance examination for specialised medical training, have completed at least two years of a training course leading to an official degree in a health-sciences specialisation.
  • Holders of a degree issued under a foreign education system. In these cases, homologation is not required, but the UPC must verify that the degree certifies a level of training equivalent to an official Spanish master's degree and qualifies the holder for admission to doctoral studies in the country where it was issued. Admission on this basis does not imply homologation of the foreign degree or its recognition for any purpose other than admission to doctoral studies.
  • Holders of a Spanish doctoral qualification issued under previous university regulations.
  • Note 1: Doctoral studies entrance regulations for holders of an undergraduate degree awarded before the introduction of the EHEA (CG 47/02 2014)

    Note 2: Governing Council Decision 64/2014, which approves the procedure and criteria for assessing the fulfilment of academic admission requirements for doctoral studies by holders of non-homologated foreign degrees (CG 25/03 2014)

Admission criteria and merits assessment

Applications for admission to the doctoral programme in Photonics must be submitted through the website http://jobs.icfo.eu/, to which interested students are directed. Detailed information on specific vacancies available for doctoral students at any given time in each of the ICFO's research groups is published on this web page.

The following admission requirements are assessed on a yes/no basis and must be met to undertake the selection process:

• High level of English.
• High level of academic performance (GPA).
• Motivation to pursue doctoral studies in one of the fields of the doctoral programme.

In the first stage of the selection process, carried out by the admission body for the Photonics programme, requirements are assessed based on documents submitted in the application process, which are standardised to ensure that the assessment process is fair and unbiased. Accepted applications are assessed based on the following criteria, which carry equal weight:

• Previous research and cross-cutting experience (25%).

• Academic excellence and other achievements (25%).
• Statement of research interests (25%).
• Quality of references (25%).

In the second stage of the selection process, carried out by a selection committee appointed specifically for the call, assessment is based on the written proposals submitted by applicants (if applicable), their performance in an interview, and their answers to questions from the selection committee. The following criteria are considered and carry equal weight:

• Presentation of the research project (33%).
• Motivation to pursue doctoral studies in the chosen field and scientific interests (33%).
• Competencies and skills with respect to communication, independence, initiative and teamwork (33%).

Each of these points is assessed by assigning a score from 0 to 5 based on standardised scales. These scores are then combined (with equal weighting) to obtain the final result, which will determine the ranking of applicants.

Finally, measures are taken to ensure that the principles of transparency, efficiency and international compatibility set out in the European Charter for Researchers and the European Code of Conduct for the Recruitment of Researchers are followed throughout the admission process for the doctoral programme in Photonics. The process will also be free of any discrimination based on gender or nationality.

Training complements

Students who hold one of the following UPC master’s degrees, which are linked to the doctoral programme, will not be required to complete bridging courses: Erasmus Mundus master's degree in Photonics; master's degree in Photonics Engineering, Nanophotonics and Biophotonics; master's degree in Engineering Physics; and master's degree in Quantum Science and Technology.

Neither will students who have completed a master's degree in photonics or physics from another university be required to complete bridging courses.

In the case of students who have completed a master's degree in another field – such as a master's degree in biomedical sciences or a multidisciplinary master's degree in experimental sciences – the applicant’s academic record and the project they propose to work on will be assessed, and the academic committee will determine on a case-by-case basis whether specific bridging courses must be completed. If the academic committee so determines, these students will be required to take one of the following subjects as a bridging course:

• Introduction to Photonics. Optics and Lasers (5 ECTS credits), from the master’s degree in Photonics
• Applied Photonics (5 ECTS credits), from the master's degree in Enabling Technologies for the Food and Bioprocessing Industry.

Enrolment period for new doctoral students

Enrolment is open year round, subject to the calendar established by the Doctoral School.

More information at the registration section for new doctoral students

Enrolment period

In September.

More information at the general registration section

Monitoring and evaluation of the doctoral student

Procedure for the preparation and defense of the research plan

Doctoral candidates must submit a research plan, which will be included in their doctoral student activity report, before the end of the first year. The plan may be improved over the course of the doctoral degree. It must be endorsed by the tutor and the supervisor, and it must include the method that is to be followed and the aims of the research.

At least one of these annual assessments will include a public presentation and defence of the research plan and work done before a committee composed of three doctoral degree holders, which will be conducted in the manner determined by each academic committee. The examination committee awards a Pass or Fail mark. A Pass mark is a prerequisite for continuing on the doctoral programme. Doctoral candidates awarded a Fail mark must submit a new research plan for assessment by the academic committee of the doctoral programme within six months.

The committee assesses the research plan every year, in addition to all of the other activities in the doctoral student activity report. Doctoral candidates who are awarded two consecutive Fail marks for the research plan will be obliged to definitely withdraw from the programme.

If they change the subject of their thesis, they must submit a new research plan.

Formation activities

The doctoral programme in Photonics does not specify any minimum requirements with respect to number of papers published, conferences attended, or other activities. However, the academic committee for the programme will seek to ensure that each thesis meets the highest international standards before it is accepted for oral defence.

The training activities that make up the programme (including details of their duration and whether they are compulsory or optional) are listed below.

Mobility, 3 months (optional)
Preparation and initial defence of research plan, 50 hours (compulsory)
Training in information skills, 1.5 hours (optional)
Research Methodology, 12 hours (optional)
Innovation and Creativity, 8 hours (optional)
Language and Communication Skills, 18 hours (optional)
Scientific seminars, 25 hours/year (optional)
ICONS seminars, 40 hours/year (optional)
Coffee sessions with prominent researchers, 2 hours/year (optional)
Programme-specific workshops, 1 day/year (optional)
Publications, 50 hours (compulsory)
PhD lectures, 65 hours/year (optional)
Outreach activities, 18 hours (optional)
Training in technical skills, 5 hours for each technique (optional)
Effective Oral Presentations, 10 hours (optional)
ICFO-ESADE: From Science to Business, 24 hours (optional)
Introduction to Patent Engineering and Management, 7.5 hours (optional)
Language courses, 40 hours (Spanish, Catalan and English; optional)
Research Integrity, 3 hours (compulsory)
Career Development, 10 hours (optional)
Resilience and Well-Being, 6 hours (optional)
Essential Transferable Skills for Early Career Researchers, 12 hours (optional).

Procedure for assignment of tutor and thesis director

The academic committee of the doctoral programme assigns a thesis supervisor to each doctoral candidate when they are admitted or enrol for the first time, taking account of the thesis supervision commitment referred to in the admission decision.

The thesis supervisor will ensure that training activities carried out by the doctoral candidate are coherent and suitable, and that the topic of the candidate’s doctoral thesis will have an impact and make a novel contribution to knowledge in the relevant field. The thesis supervisor will also guide the doctoral candidate in planning the thesis and, if necessary, tailoring it to any other projects or activities undertaken. The thesis supervisor will generally be a UPC professor or researcher who holds a doctoral degree and has documented research experience. This includes PhD-holding staff at associated schools (as determined by the Governing Council) and UPC-affiliated research institutes (in accordance with corresponding collaboration and affiliation agreements). When thesis supervisors are UPC staff members, they also act as the doctoral candidate’s tutor.

PhD holders who do not meet these criteria (as a result of their contractual relationship or the nature of the institution to which they are attached) must be approved by the UPC Doctoral School's Standing Committee in order to participate in a doctoral programme as researchers with documented research experience.

The academic committee of the doctoral programme may approve the appointment of a PhD-holding expert who is not a UPC staff member as a candidate’s thesis supervisor. In such cases, the prior authorisation of the UPC Doctoral School's Standing Committee is required. A UPC staff member who holds a doctoral degree and has documented research experience must also be proposed to act as a co-supervisor, or as the doctoral candidate’s tutor if one has not been assigned.

A thesis supervisor may step down from this role if there are justified reasons (recognised as valid by the committee) for doing so. If this occurs, the academic committee of the doctoral programme will assign the doctoral candidate a new thesis supervisor.

Provided there are justified reasons for doing so, and after hearing any relevant input from the doctoral candidate, the academic committee of the doctoral programme may assign a new thesis supervisor at any time during the period of doctoral study.

If there are academic reasons for doing so (an interdisciplinary topic, joint or international programmes, etc.) and the academic committee of the programme gives its approval, an additional thesis supervisor may be assigned. Supervisors and co-supervisors have the same responsibilities and academic recognition.

The maximum number of supervisors of a doctoral thesis is two: a supervisor and a co-supervisor.

For theses carried out under a cotutelle agreement or as part of an Industrial Doctorate, if necessary and if the agreement foresees it this maximum number of supervisors may not apply. This notwithstanding, the maximum number of supervisors belonging to the UPC is two.

More information at the PhD theses section

Permanence

The academic committee of the programme may authorise an extension of up to one year for full-time doctoral candidates who have not applied to deposit their thesis by the end of the three-year period of study, in the terms outlined in the Academic Regulations for Doctoral Studies of the Universitat Politècnica de Catalunya. In the case of part-time candidates, an extension of two years may be authorised. In both cases, in exceptional circumstances a further one-year extension may be granted by the Doctoral School's Standing Committee, upon the submission of a reasoned application by the academic committee of the doctoral programme.

A doctoral candidate may be dismissed from a doctoral programme for the following reasons:

  • The doctoral candidate submitting a justified application to withdraw from the programme.
  • The maximum period of study and of extensions thereof ending.
  • The doctoral candidate not having enrolled every academic year (unless he or she has been authorised to temporarily withdraw).
  • The doctoral candidate failing two consecutive assessments.
  • The doctoral candidate having disciplinary proceedings filed against him or her that rule that he or she must be dismissed from the UPC.

Dismissal from the programme implies that doctoral candidates cannot continue studying at the UPC and the closing of their academic record. This notwithstanding, they may apply to the academic committee of the programme for readmission and the committee must reevaluate them in accordance with the criteria established in the regulations.

International Mention

The doctoral degree certificate may include International Doctorate mention. In this case, the doctoral candidate must meet the following requirements:

a) During the period of study leading to the award of the doctoral degree, the doctoral candidate must have spent at least three months at a respected higher education institution or research centre outside Spain to complete courses or do research work. The stays and activities carried out must be endorsed by the thesis supervisor and authorised by the academic committee of the programme. The candidate must provide a certifying document issued by the person responsible for the research group of the body or bodies where the stay or activity was completed. This information will be added to the doctoral student’s activity report.
b) Part of the thesis (at least the summary and conclusions) must be written and presented in one of the languages commonly used for science communication in the relevant field of knowledge, which must not be an official language of Spain. This rule does not apply to stays and reports in Spanish or to experts from Spanish-speaking countries.
c) At least two PhD-holding experts belonging to a higher education institution or research centre outside Spain must have issued officially certified reports on the thesis.
d) The thesis examination committee must have included at least one PhD-holding expert from a higher education or research institution outside Spain who was not responsible for the candidate’s stay abroad (point a) above).
e) The thesis defence must have taken place on UPC premises or, in the case of joint programmes, at the location specified in the collaboration agreement.

Learning resources

In addition to the support units and services available at the UPC, the ICFO administration team is made up of staff with a high level of specialisation in various fields who provide specific and accessible assistance to students of the doctoral programme in Photonics. Specifically, the ICFO offers the following services and facilities:

• Human Resources and Education Unit: academic and hiring procedures, permits for foreign nationals, accommodation-related matters, predoctoral grants for doctoral studies, and mobility grants for doctoral students.
• Knowledge and Technology Transfer Unit: https://www.icfo.eu/lang/industry
• ICFO Projects Unit: responsible for seeking funding opportunities, advising researchers on preparation of proposals, and processing applications.

Doctoral students in the Photonics programme also have access to the NanoFabrication Lab, the Super-Resolution Light Microscopy and Nanoscopy Research Facility, the Advanced Engineering Lab, the Biology Lab, the Chemistry Lab and the Post-Processing Lab: https://www.icfo.eu/lang/research/facilities

Doctoral Theses

List of authorized thesis for defense

  • DE ROQUE FERNANDEZ, PABLO MANUEL: Contributions to nanophotonics: linear, nonlinear and quantum phenomena
    Author: DE ROQUE FERNANDEZ, PABLO MANUEL
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Deposit date: 06/04/2022
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: VAN HULST, NIEK
    Committee:
         PRESIDENT: QUIDANT, ROMAIN
         SECRETARI: PAPADAKI, GEORGIA
         VOCAL: AIZPURUA IRIAZABAL, JAVIER
    Thesis abstract: Nanophotonics can be defined as the science and technology studying the control optical fields at the nanoscale and their interaction with matter. In order to spatially control such fields we would need structures with characteristic dimensions of the order of the wavelength, bringing us to the nanoscale. A way to control optical fields at this scale is the use of nanoantennas, optical equivalent of radio-antennas. They provide efficient interfaces between near-fields generated by light sources and radiative channels. After a brief Introduction, Chapter 2 describes interaction between single photon emitters and nanoantennas. We start the chapter introducing a method to numerically simulate the interaction. A key concept to solving Maxwell equations is that of the Green function. I show how this function relates to the emission rate of optical emitters in a nanophotonic environment. I then describe an our efforts to build a lifetime-imaging near-field scanning optical microscope. Using this rig we are able to measure changes changes in the emission rate of single emitters that interact with resonant optical antennas. A complementary way to control optical field in the nanoscale is using dielectric confinement. Chapter 3 introduces hybrid structures combining nanoantennas and dielectric waveguides. I generalize the Green function formalism introduced in Chapter 2, and show how this is related to the energy transfer rate between a donor and an acceptor. I use this numerical method to calculate the energy transfer rate in a hybrid structure. An increase of orders of magnitude is found at distances of the order of the wavelengths of the transferred photons. This chapter finishes by discussing the role that the local density of optical states has on the energy transfer efficiency.Nanoantennas increase near-field by orders of magnitude. In these conditions, nonlinear optical effects start to play a role. Chapter 4 is devoted to these nonlinear interactions mediated by nanoantennas. I explore nonlinear interactions in resonant nanoantennas, in particular SHG. First I introduce a method to numerically compute the contributions to SHG generated by the metal in nanoantennas. Both surface and bulk contributions to SHG are considered. I use the numerical method to show that narrowings within the antenna shape are sources of increased SHG. The increase in SHG is attributed to increase of the local field gradients, that increase to the bulk contribution to SHG. We numerically validate our results by performing SHG measurements at the single resonant antenna level.Optical fields are functions of space, but also of time. The development of broadband femtosecond lasers and pulse shaping techniques allows control of optical field down to the femtosecond timescale. Chapter 5 explores the control of optical fields in time. Using phase shaping methods we optimize the two-photon absorption process in single QDs. I introduce a new optimization algorithm, that allows us to perform the optimization using as feedback signal the luminesce from single QDs. We then compare our results with standard phase shaping techniques.Based on their success to effectively control all kinds of optical fields, plasmon supporting nanoantennas are being actively researched in the field of quantum optics. In Chapter 6 I describe a quantum eraser experiment mediated by structures supporting surface plasmon resonances. I first explain the details and subtleties of a quantum eraser experiment. I then detail our efforts to reproduce previously reported results about how to fabricate elliptical bullseye antennas behaving as quarter waveplates. Quarter waveplates are a required part for the quantum eraser effect to take place. An additional key component of our experiment is a bright, state-of-the-art entangle polarization entangle photon source that is described at length. We then perform a quantum eraser experiment mediated by plasmons.
  • ROMBAUT SEGARRA, JUAN: Multifunctional optical surfaces for optoelectronic devices
    Author: ROMBAUT SEGARRA, JUAN
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Temporary seizure
    Deposit date: 25/02/2022
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: PRUNERI, VALERIO
    Committee:
         PRESIDENT: MANNELLI, ILARIA
         SECRETARI: MARTORELL PENA, JORDI
         VOCAL: ST CLAIR, TODD PARRISH
    Thesis abstract: Highly transparent optical surfaces with anti-reflection (AR) and self-cleaning properties have the potential to increase performance in a wide range of applications, such as display screens, photovoltaic cells or sensors. Nature has provided numerous examples of biological systems with interesting functionalities that have high commercial interest, from the broadband and omnidirectional anti-reflection effect created by the tiny nanopillars found on the corneas of moths¿ eyes, to the self-cleaning behaviour of lotus leaves generated by micro-and nanoprotuberances. However, despite intense academic research, replicating such elaborate nanostructures for mass-production remains a major challenge due to the limitations of the existing nanofabrication techniques based on classical optical and e-beam lithography processes. This thesis is devoted to the study of bio-inspired multifunctional nanostructured surfaces with enhanced optical and wetting properties for use in optoelectronic devices. Novel and reliable manufacturing techniques are proposed for patterning organic and inorganic materials with high precision and throughput, aiming to bring this technology out of the laboratory and making it industrially viable. The first part of this study has been centred on glass, as it is one of the most widely used materials for optoelectronic devices. Chapter 3 presents a nanopillar structure created on glass substrates, which provides high anti-reflective properties, enhanced transmission, superhydrophobicity, and high mechanical resistance against external agents. The proposed manufacturing method permits moderate tunability to adapt the structure to the requirements of different applications. The design and optimisation of the fabrication process and a full characterisation of the samples are reported. Chapter 4 describes the combination of two different anti-reflective approaches, state-of-the-art multilayer (ML) anti-reflective coatings and self-cleaning biomimetic nanostructures (NS). The classical ML coating, relying on destructive interference from multiple reflections at layer interfaces is capable of providing excellent AR properties, but with a limited wavelength range and angular acceptance. In addition, it has limited hydrophobicity and self-cleaning properties due to its flat surface. The NS coating can provide broad wavelength and angular AR properties, as well as superhydrophobicity. However, it suffers from mechanical durability issues. In this work, the combination of both methods is presented as an innovative solution, combining greater anti-reflective operational wavelength and angular acceptance, self-cleaning properties, and high mechanical durability. A nanostructured design for transparent oleophobic surfaces is investigated and experimentally demonstrated in Chapter 5. Two new fabrication techniques to create nanocavities on glass are presented. The nanohole structure can repel oil and other low surface tension liquids, and a new wetting model is developed to theoretically explain the mechanism. The porous structure modifies the effective refractive index of the nanostructured layer between the air and the glass, creating an AR effect. The samples present higher transmission, as well as low scattering due to the subwavelength size of the cavities. In addition, the geometry of the surface offers higher mechanical resistance compared to nanopillars, widening the potential applications where it could be used. Finally, in Chapter 6, a new method to nanostructure organic materials with high resolution is presented. Nanostructured thin polyimide films on top of glass surfaces can act as an anti-reflective coating, while adding protection and hydrophobicity. A practical example is demonstrated with transparent electrodes made of Indium Tin Oxide. By covering a surface with nanostructured polyimide, the overall optical response can be improved while its electric properties are protected by the polymeric film.

Last update: 20/05/2022 04:45:19.

List of lodged theses

  • BERNARDELLO, MATTEO: Development of novel multimodal light-sheet fluorescence microscopes for in-vivo imaging of vertebrate organisms
    Author: BERNARDELLO, MATTEO
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Deposit date: 09/05/2022
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: LOZA ALVAREZ, PABLO | GUALDA MANZANO, EMILIO JOSE
    Committee:
         PRESIDENT: LORENZO, CORINNE
         SECRETARI: KRIEG, MICHAEL
         VOCAL: GONÇALVES MARTINS, GABRIEL JOSÉ
    Thesis abstract: The observation of biological processes in their native environments is of critical importance for life science. While substantial information can be derived from the examination of in-vitro biological samples, in-vivo studies are necessary to reveal the complexity of the dynamics happening in real-time within a living organism. Between the possible biological model choices, vertebrates represent an important family due to the various characteristics they share with the human organism. The development of an embryo, the effect of a drug, the interaction between the immune system and pathogens, and the cellular machinery activities are all examples of highly-relevant applications requiring in-vivo observations on broadly used vertebrate models such as the zebrafish and the mouse. To perform such observations, appropriate devices have been devised. Fluorescence microscopy is one of the main approaches through which specific sample structures can be detected and registered in high-contrast images. Through micro-injections or transgenic lines, a living specimen can express fluorescence and can be imaged through such microscopes. Various fluorescence microscopy techniques have been developed, such as Widefield Microscopy (WM) and Laser Scanning Confocal Microscopy (LSCM). In WM the entire sample is visualized in a single 2D image, therefore losing the depth information, while LSCM can recover the 3D information of the sample but with inherent limitations, such as phototoxicity and limited imaging speed. In the last two decades, Light-Sheet Fluorescence Microscopy (LSFM) emerged as a technique providing fast and 3D imaging, while minimizing collateral damages to the specimen. However, due to the particular configuration of the microscope¿s components, LSFM setups are normally optimized for a single application. Also, sample management is not trivial, as controlling the specimen positioning and keeping it alive for a long time within the microscope needs dedicated environmental conditioning. In this thesis, I aimed at advancing the imaging flexibility of LSFM, with particular attention to sample management. The conjugation of these aspects enabled novel observations and applications on living vertebrate samples. In Chapter 1, a brief review of the concepts employed within this thesis is presented, also pointing to the main challenges that the thesis aims to solve.In Chapter 2, a new design for multimodal LSFM is presented, which enables performing different experiments with the same instrument. Particularly, high-throughput studies would benefit from this imaging paradigm, conjugating the need for fast and reproducible mounting of multiple samples with the opportunity to image them in 3D. Additionally, from this design, a transportable setup has also been implemented.With these systems, I studied the dynamics of the yolk¿s microtubule network of zebrafish embryos, describing novel features and underlining the importance of live imaging to have a whole view of the sample¿s peculiarities. This is described in Chapter 3.Further applications on challenging live samples have been implemented, monitoring the macrophage recruitment in zebrafish and the development of mouse embryos. For these applications, described in Chapter 4, I devised specific mounting protocols for the samples, keeping them alive during the imaging sessions.In Chapter 5, an additional LSFM system is described, which allows for recording the sub-cellular machinery in a living vertebrate sample, while avoiding its damage thanks to the devised sample mounting. Through this, single-molecule microscopy (SMM) studies, normally performed on cultured cells, can be extended to the nuclei of living zebrafish embryos, which better recapitulate the native environment where biological processes take place.Finally, Chapter 6 recapitulates the conclusions, the impacts, future integrations, and experimental procedures that would be enabled by the work resumed in this th

Last update: 20/05/2022 04:30:19.

List of defended theses by year

  • BIANCHET, LORENA CECILIA: A versatile system for the study of light-matter interactions at the level of individual particles
    Author: BIANCHET, LORENA CECILIA
    Thesis link: http://hdl.handle.net/10803/673737
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Reading date: 25/02/2022
    Thesis director: MITCHELL, MORGAN

    Committee:
         PRESIDENT: BARREDO GONZALEZ, DANIEL
         SECRETARI: CHANG, DARRICK
         VOCAL: KAISER, ROBIN PIERRE LÉON
    Thesis abstract: In this thesis, a single-atom trap in a "Maltese cross'' geometry (MCG) was designed, built up and characterized. A MCG atom trap uses four in-vacuum lenses to achieve four-directional high-numerical-aperture optical coupling to single trapped atoms and small atomic arrays. Here, we describe the theoretical background, the design, and the optical methods used for trapping and cooling atoms in a MCG geometry optimized for high coupling efficiency. We also characterize the resulting properties of the trap and trapped atoms. For this propose we measure occupancy, loading rate, lifetime, temperature, fluorescence anti-bunching and trap frequencies using current best practices. We also report another use of the optical control and coupling offered by the MCG: we use the two on-trap-axis lenses to produce a 1D optical lattice, the sites of which are stochastically filled and emptied by the trap loading process. The two off-trap-axis lenses are used for imaging and single-mode collection. Correlations of single-mode and imaging fluorescence signals are then used to map the single-mode collection efficiency.We observe trap characteristics comparable to what has been reported for single-atom traps with one- or two-lens optical systems. This shows that four-direction high-NA coupling can be achieved with little reduction in trap performance. Finally, we conclude with the near-future plans of the experiment.

  • CASTILLA GÓMEZ, MANUEL SEBASTIÁN: Photodetectors based on graphene pn-junctions for mid-infrared and terahertz range
    Author: CASTILLA GÓMEZ, MANUEL SEBASTIÁN
    Thesis link: http://hdl.handle.net/10803/674017
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Reading date: 27/01/2022
    Thesis director: KOPPENS, FRANK

    Committee:
         PRESIDENT: SCALARI, GIACOMO
         SECRETARI: PRUNERI, VALERIO
         VOCAL: TREDICUCCI, ALESSANDRO
    Thesis abstract: Long wavelength light contains the infrared and terahertz (THz) spetral range of the spectrum. This wavelength range spans approximately from 1 µm to 1 mm. Several applications can be explored in this spectral range such as thermal imaging, temperature monitoring, night vision, etc. Moreover, molecular vibrations resonate at these energies that are the fingerprints for compounds identification via molecular spectroscopy. Also, THz light has an important role in security since at these frequencies is possible to achieve a higher resolution for imaging compared to millimeter waves that are typically used in airports. Despite all these potential applications, long wavelength light technology still remains non-fully exploited. One of the reasons is due to the lack of competing instrumentation such as sources, modulators, detectors, sensors, etc. In particular, regarding the detectors, the commercially available technology present some issues such as working at room temperature, speed, sensitivity, dynamic range, broadband frequency operation, CMOS compatibility, size and compactness, etc. The extensive research during the last years on graphene and other 2D materials has opened new possibilities of novel light matter interactions that can unveil the next generation photodectectors and sensors, ascribed to the advantages respect to conventional semiconductors.In this thesis, we focus on developing novel photodetection platforms in the mid, longwave infrared and THz range based on graphene pn-junctions with integrated metallic nanostructures and hyperbolic 2D material. We have successfully integrated an antenna with a graphene pn-junction for highly sensitive and fast THz detection in this regime. This novel terahertz detector exploits efficiently the photothermoelectric (PTE) effect, based on a design that employs a dual-gated, dipolar antenna with a nanogap. We have demonstrated that this novel detector leads to an excellent performance, which fulfills a combination of figure-of-merits that is currently missing in the state-of-the-art detectors. We also overcame the main challenge of infrared photodetectors, which is to funnel the light into a small nanoscale active area and efficiently convert it into an electrical signal. We achieve this by efficient coupling of a plasmonic antenna to hyperbolic phonon-polaritons in hBN to highly concentrate mid-infrared light into a graphene pn-junction. We use a metallic bowtie antenna and H-shape resonant gates that besides concentrating the light into its nanogap, their plasmonic resonances spectrally overlap within the upper reststrahlen band (RB) of hBN (6-7 µm), thus launching efficiently these HPPs and guiding them with constructive interferences towards the photodetector active area. Additionally, by having two different antennas orientation, it allows us to have sensitive detection in two incident polarizations. Furthermore, we have shown mid and long-wave infrared photocurrent spectroscopy via electrical detection of graphene plasmons, hyperbolic phonon-polaritons and their hybridized modes. We combined in one single platform the efficiently excited polaritonic material that also acts as a detector itself. We identified peaks in the photocurrent spectra that evolves and blue shift by increasing the gate voltage, which are related to the polaritonic resonances. Finally, we investigated the electrical detection of molecular vibrations coupled to hyperbolic phonon polaritons in hBN. We detected this strong light-matter interaction via a graphene pn-junction placed at the vicinity of the molecules-hBN stack. The edges of the gap of the local gates launch efficiently the hBN HPPs that interact with the CBP molecular resonances that are spectrally located at the upper RB. We explored this interaction as a function of the thickness of the molecular layers, near and far field contribution, etc.

  • ELU ETXANO, UGAITZ: High-peak-power mid-infrared OPCPAs for extreme nonlinear photonics
    Author: ELU ETXANO, UGAITZ
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Reading date: 03/05/2022
    Thesis director: BIEGERT, JENS

    Committee:
         PRESIDENT: CHALUS, OLIVIER
         SECRETARI: EBRAHIM-ZADEH, MAJID
         VOCAL: NOVOA FERNÁNDEZ, DAVID
    Thesis abstract: In the last decades, intense carrier-envelope-phase-stable (CEP-stable) and near-single-cycle, coherent mid-infrared sources have become charming for a variety of applications in physics, chemistry and biology. In particular, those mid-infrared sources are of tremendous interest for broadband spectroscopic applications, solid-state light-matter studies, strong-field physics research, and attosecond science. On the one hand, broadband coherent mid-infrared sources are capable of replacing time-consuming scanning techniques to classify organic structures or detect hazardous chemical compounds. On the other hand, high-energy, CEP-stable, near single-cycle mid-infrared sources are key in strong-field physics and attoscience due to the wavelength scaling nature of strong-field electron re-collision-based processes.Nevertheless, implementing such mid-infrared sources remains challenging due to the lack of user-friendly temporal, spectral and spatial characterisation instruments, efficient and affordable reflection/transmission coatings, and commercially accessible low-loss dispersion compensation optics. Moreover, the absence of suitable laser gain materials reinforces nonlinear down conversion and amplification methods. One approach to overcoming the current limitations and developing intense ultrafast mid-infrared systems is to use a commercially available high-power near-infrared laser combined with second-order nonlinear processes such as the optical parametric amplification (OPA) process or the optical parametric chirped-pulse amplification (OPCPA) process. OPCPA can be essential to avoid damage to the nonlinear crystals or tailor the amplified spectrum. OPCPAs are also used when femtosecond pulses are required to be amplified using picosecond pump lasers. As a result, OPCPA systems offer novel opportunities for producing high-intensity, broadband mid-infrared femtosecond pulses.Here the 160 kHz high-power mid-infrared OPCPA system is developed to overcome the existing limitations in the high-repetition-rate mid-infrared regime. This thesis demonstrates the generation of unique 3.2 µm pulses with a single-cycle duration and delivering up to 3.9 GW of peak power. The combination of the CEP stability with the single-cycle duration and the high energies demonstrated makes this system suitable to produce ultrafast radiation in the kilo-electron-volt X-ray regime.A newly developed mid-infrared nonlinear crystal named BGGSe is proposed for efficient broadband infrared radiation generation. The ultra-broadband source is produced using the BGGSe crystal combined with a unique anti-resonant-reflection photonic crystal fibre (ARR-PCF) that enables tailoring the compression of our 3.2 µm pulses at 160 kHz. Using the BGGSe crystal and the ARR-PCF, we demonstrate the generation of coherent light expanding up to seven octaves, from UV to the THz regime.The second mid-infrared system presented in this thesis is the high-energy 7 µm OPCPA operated at a 100 Hz repetition rate and developed to generate hard X-rays in the multi-kilo-electron-volt regime. The development of this second OPCPA centred at 7 µm overcomes the considerable challenges in the mid-infrared regime. This thesis demonstrates the amplification of those mid-infrared pulses to 750 µJ and the efficient back-compression to 188 fs.Moreover, high harmonic generation in solids driven by 7 µm pulses at 100 Hz and 3.2 µm pulses at 160 kHz has been exploited for solid-state studies using the developed OPCPA systems. This thesis highlights the results achieved in the high-temperature YBCO superconductor, where exponential enhancement of harmonics is demonstrated below the critical temperature.All these demonstrations make those systems a key-enabling technology for the next generation of studies in solid-state physics, extreme nonlinear photonics, strong-field physics and coherent X-ray science.

  • FRÖLIAN, ANIKA: Simulating a topological gauge theory in a Raman-dressed Bose-Einstein condensate
    Author: FRÖLIAN, ANIKA
    Thesis link: http://hdl.handle.net/10803/674221
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Reading date: 26/04/2022
    Thesis director: TARRUELL, LETICIA

    Committee:
         PRESIDENT: ÖHBERG, PATRIK JAN PETER
         SECRETARI: DE RIEDMATTEN, HUGUES
         VOCAL: BEUGNON, JÉRÔME CHRISTOPHE
    Thesis abstract: Ultracold quantum gases constitute a powerful and versatile tool to experimentally explore quantum many-body physics. This thesis presents an original contribution to the quantum simulation of gauge theories with ultracold atoms, which has evolved into a thriving research field during the last years. Gauge theories form the basis of our modern understanding of nature, with applications ranging from high energy to condensed matter physics. A subclass formed by topological gauge theories plays a key role in the effective description of certain strongly correlated materials. An important example is the fractional quantum Hall effect, where the topological Chern-Simons theory can provide an effective single-particle description for some of the filling factors. A simpler toy model which already provides access to the key properties of topological gauge theories is the one-dimensional chiral BF theory obtained from Chern-Simons theory after dimensional reduction. This thesis reports on the quantum simulation of the chiral BF theory in an ultracold gas of bosonic potassium atoms, establishing ultracold quantum gases as a resource for the quantum simulation of topological gauge theories. As a first step, we establish the theoretical framework necessary for the quantum simulation of the chiral BF theory. We start by deriving an encoded Hamiltonian for this gauge theory in which the gauge degrees of freedom are eliminated via the local symmetry constraint. The encoding results in a system with only matter particles that have local but unconventional chiral interactions. We continue by showing that these chiral interactions can be realized in a Raman-dressed Bose-Einstein condensate (BEC) with unbalanced interactions by deriving an effective single-component Hamiltonian from a microscopic view in momentum space.Subsequently, we present the implementation of the different ingredients necessary to realize the chiral BF theory in our experiment. In a first series of experiments, we study the effects of coherent coupling on the effective collisional properties of the system. To this end, we employ radio-frequency to couple two internal states with unequal interaction in a 39K BEC. We measure the effective scattering length of the system as a function of the coupling field parameters. Moreover, we use the coherent coupling as an interaction control tool and quench the effective interactions from repulsive to attractive values. Afterwards, we turn to the implementation of Raman coupling and characterize the modifications in the dispersion of Raman-dressed atoms at the single particle level. Finally, we demonstrate the realization of the chiral BF theory by combining Raman coupling and unbalanced interactions in a BEC of 39K. We probe the chiral interactions arising in the system and observe the formation of chiral bright solitons which dissolve as soon as their propagation direction is inverted. Moreover, we use the local symmetry constraint of the theory to reveal the BF electric field through measurements on the matter field alone, and show that it leads to an asymmetric expansion of the condensate. Our experiments establish chiral interactions as a novel resource for quantum simulation experiments and pave the way towards implementing topological gauge theories in higher dimensions with ultracold atoms.

  • KEARY, SARAH: Spatiotemporal organisation of protein nanoclusters in adhesion complexes
    Author: KEARY, SARAH
    Thesis link: http://hdl.handle.net/10803/674034
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Reading date: 28/02/2022
    Thesis director: GARCÍA PARAJO, MARÍA | CAMPELO AUBARELL, FELIX

    Committee:
         PRESIDENT: BRASSELET, SOPHIE
         SECRETARI: KRIEG, MICHAEL
         VOCAL: ROCA-CUSACHS SOULERE, PERE
    Thesis abstract: The main goal of this thesis was to contribute to the understanding of the nanoscale lateral organisation of key proteins in adhesion complexes. For this, we exploited single molecule localisation-based super-resolution microscopy STORM to visualise the lateral organisation of five key proteins of the adhesion complex: the integrins, a5ß1 and avß3, and three of their adaptor proteins: paxillin, talin, and vinculin.We first established that these proteins form nanoclusters of around 50nm size that are preserved across all five proteins. Interestingly, these nanoclusters have similar size and number of localisations regardless of their localisation on the membrane, i.e., in the different adhesion structures studied, namely, FA and fAs as well as outside, and were maintained for different cell seeding times, from 90 min to 24 h. These results suggest that nanoclustering constitutes a general mechanism of adhesion protein organisation, creating nanohubs of functional activity. When studying how protein organisation in nanoclusters changes as a function of adhesion time, we revealed a two- and a four-fold increase in the density of a5ß1 and avß3 clusters, respectively, for cells that spread for 24 h as compared to those that spread for 90 min. Further analysis suggests that the increase in density of integrin nanoclusters is due to selective targeting of new integrin nanoclusters to the basal membrane. Following on from this, we then focus on mapping the distribution of these nanoclusters, first by measuring the nearest neighbour distance; (NND) between clusters of the same protein, and second by considering the shortest distance between clusters of different proteins. We found a clear physical segregation of nanoclusters of the same protein around ~55 nm, which is established at early time points after cell seeding for a5ß1 and the adaptors and maintained after 24 h. Interestingly, avß3 nanoclusters exhibited a more random distribution at earlier seeding times and progressively reached similar lateral segregation at 24 h. Concomitant with this lateral segregation, we observed an enriched of all proteins at distances between 100-200 nm. Our observations are in line with the existence of a critical distance spacing between integrins needed for support adhesion and stabilisation of focal adhesions. Furthermore, we found that the relative distribution of nanoclusters of different proteins is predominantly random, with the exception of a5ß1 and paxillin, which organise with a separation of 50 nm. Such an unexpected random distribution between integrins and their adaptors might reflect the dynamic and short-live active state of integrins.Finally, we evaluated and described the mesoscale organisation of nanoclusters inside adhesions. Specifically, we computed the shortest distance between a nanocluster and the edge of the adhesion and studied how the distance to the edge depends on the NND between clusters of different proteins. Remarkably, we found a preference for a5ß1 nanoclusters to be at the edge of the adhesions and in close proximity to its adaptors in a peripheral belt region of the adhesions. Altogether, the results of this thesis demonstrate a clear lateral and hierarchical organisation of integrins and their adaptors inside focal adhesions. Based on our results (together with extensive literature in the field), we propose that one population of a5ß1 nanoclusters and their adaptors preferentially localise close to the edge of adhesion complexes regulating the process of adhesion. A second population of a5ß1 and most of the avß3 nanoclusters organise more randomly at the centre of the adhesions, with dynamic and brief engagement to their adaptors, likely playing a role in mechanotransduction. As a whole, we postulate that the lateral nano- and meso-scale organisation of adhesion proteins is strictly related to and important for the functions of adhesion, mechanosensing and mechanotransduction.

  • ÖZDEMIR, ONUR: Further Into the Infrared With Quantum Dot Photodetectors
    Author: ÖZDEMIR, ONUR
    Thesis link: http://hdl.handle.net/10803/674039
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Reading date: 04/02/2022
    Thesis director: KONSTANTATOS, GERASIMOS

    Committee:
         PRESIDENT: MARTIN GARCIA, BEATRIZ
         SECRETARI: GARCÍA DE ARQUER, FRANCISCO PELAYO
         VOCAL: CURRY, RICHARD JAMES
    Thesis abstract: In the infrared, photodetectors are the key components in a wide-variety of applications such as thermal imaging, remote sensing, spectroscopy with newer technologies added to the list such as LiDaR and deep tissue imaging. As the demand for photodetectors increase with a shift towards longer wavelengths, we need high-performance, scalable and low-power consuming alternatives to current infrared photodetector technologies.Colloidal Quantum Dots (CQDs) are nanoscale-sized semiconductors with quantum-confined charges in all 3 dimensions. They can be synthesized in solution and can easily be deposited onto a desired substrate as a quantum dot (QD) film which allows easy integration with current silicon-based technologies. QDs are efficient light absorbers and their bandgap can accurately be tuned by controlling their size during synthesis. Lead chalcogenide QDs, such as PbS and PbSe, have tunable bandgaps covering the near-infrared (NIR) and short-wave infrared (SWIR) up to 3 µm, making them ideal sensitizers for photodetectors.In this thesis, we utilize PbS QDs with an excitonic bandgap around 1.8 µm in combination with 2-dimensional transition metal dichalcogenides (TMDCs) to form hybrid photodetectors operating in the infrared. With their layered structure similar to graphene and semiconducting character, TMDCs have outstanding electronic properties. Incorporating few-layers of TMDCs in our PbS QD detectors allows fast and efficient charge transfer from the QDs to the photodetector contacts through the TMDC layer, boosting detector responsivity. By combining PbS QDs with two types of TMDCs, WS2 and MoS2, we are able to reach detectivities exceeding 1012 Jones at room temperature with a response up to 2 µm.Probing further into the infrared, we extend the spectral response of our hybrid detectors up to 3 µm by utilizing narrower-bandgap PbSe QDs with MoS2 layers.After a careful analysis and using strategies such as oxide-isolation of metallic contacts, we reached detectivities of 7.7 x 1010 Jones at 2.5 µm at RT. With their low-noise and high responsivities, our detectors improve the potential of hybrid detectors and demonstrate a performance comparable to commercial detectors without the need of external cooling, costly vapor deposition techniques or complex integration with silicon technology.Broadening the reach of PbS QDs even further, even beyond the limit of their bulk bandgap, up to 9 µm by using a novel doping method, we demonstrate the first PbS QD intraband photodetectors. Having developed this air-stable high n-doping method for PbS QDs, observation of intraband transitions taking place between the first two conduction levels becomes possible. These intraband transitions have lower energies compared to the bandgap, opening up another degree of freedom in tunable optical response of our QDs between 6-9 µm. We study how the doping works across a wide range of QD sizes and at different temperatures. Our photodetectors utilizing the intraband transitions in highly-doped PbS QD films have detectivities approaching 105 Jones.To sum up, we demonstrated lead chalcogenide QD based photodetectors with improved performance and spectral responses progressively shifting deeper into the infrared. Our TMDC-QD hybrid detectors reveal the potential of these systems as alternatives to commercial detectors. Whereas, surpassing the bandgap limit with high doped QDs and intraband transitions opens up new ways to realize optoelectronic devices further in the infrared.

  • PÉREZ SALINAS, DANIEL: Inhomogeneity and disorder in ultrafast phase transitions
    Author: PÉREZ SALINAS, DANIEL
    Thesis link: http://hdl.handle.net/10803/674015
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Reading date: 31/01/2022
    Thesis director: WALL, SIMON ELLIOT

    Committee:
         PRESIDENT: MIHAILOVIC, DRAGAN DRAGOLJUB
         SECRETARI: VAN HULST, NIEK
         VOCAL: RETTIG, LAURENZ
    Thesis abstract: In the recent decades, there has been a surge of interest in the wide array of emergent phenomena found in strongly correlated materials. Understanding the inner workings of this type of systems is a major challenge due to the complex way in which multiple degrees of freedom, such as electronic, structural and spin, interact with each other and themselves in non-trivial fashion. One of the most striking outcomes of these subtle interactions in correlated materials is the richness of their phase diagrams, which include exotic states that still elude a complete physical description. It is in the transition from one phase to another where the insights into the complex microscopic mechanisms may be most readily found, and so the study of phase transitions has become a staple in correlated materials science.The experimental techniques used to track phase transitions are steadily becoming more precise and, with the improvements, previously overlooked aspects of a phase transition become more apparent, such as inhomogeneity or disorder, which add another layer of complexity that may clash with our current understanding. This is particularly important in the relatively young field of ultrafast studies of correlated materials, which tackles these systems in a largely uncharted territory: non-equilibrium situations. In this thesis, we develop novel experimental techniques which push towards an assessment of disorder and/or inhomogeneity in non-equilibrium phase transitions, while still being able to accurately track the dynamics of the degrees of freedom involved. We then apply these techniques in two systems of current interest: La0.5Sr1.5MnO4, a prototypical layered manganite, and VO2, one of the most emblematic correlated materials.For La0.5Sr1.5MnO4, we introduce an all-optical tabletop pump-probe setup that is able to track the ultrafast melting of charge- and orbital-order parameter with high accuracy. We show how, in contrast with previous descriptions, the transition is incoherent and fits with the paradigm of an order-disorder process. A key factor in these dynamics, which is sometimes overlooked, is spatial phase separation into the depth of the material. With our setup, the role of initial inhomogeneity and its evolution can be readily tested. For VO2, we employ facility-scale X-ray sources to directly image phase inhomogeneity in the metal-to-insulator transition with coherent X-ray diffraction techniques. We show quantitative imaging of phase separation and domain growth statically, which in our experimental setups should be able to distinguish intermediate phases appart from the usual monoclinic insulator and rutile metal. We find no evidence of previously claimed intermediate phases such as monoclinic metal VO2. Finally, we show the first non-scanning spatially-resolved observation of the ultrafast phase transition in VO2 with nanometer resolution, where we identify a global, prompt change in the domain pattern in the femtosecond scale.

  • SUKEERT, SUKEERT: Versatile nonlinear frequency conversion sources in the near- and mid-infrared
    Author: SUKEERT, SUKEERT
    Thesis link: http://hdl.handle.net/10803/674003
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Reading date: 09/03/2022
    Thesis director: EBRAHIM-ZADEH, MAJID

    Committee:
         PRESIDENT: AGNESI, ANTONIANGELO
         SECRETARI: LOZA ALVAREZ, PABLO
         VOCAL: PEDERSEN, CHRISTIAN
    Thesis abstract: Tunable laser sources in different spectral regions are of interest for a variety of applications including spectroscopy, trace gas sensing, medical diagnostics, LIDAR and material processing. Existing lasers have limited tunability and many spectral regions continue to remain inaccessible to lasers due to lack of suitable gain media. Nonlinear frequency conversion is a viable approach to cover such difficult spectral regions in the visible, near and mid-infrared (mid-IR). Optical parametric oscillators (OPO) can provide wide wavelength tunability with high output powers in good beam quality across continuous-wave (cw), nanosecond and ultrafast picosecond and femtosecond time-scales. With the development of quasi-phase-matched (QPM) nonlinear materials in fan-out grating structure, wide wavelength tuning is possible at a fixed temperature, enabling the development of rapidly tunable devices for practical applications. Difference-frequency-generation (DFG) is also an attractive approach for generating high powers in the mid-IR in a single-pass scheme. In this thesis, we have developed second-order nonlinear frequency conversion sources based on nanosecond and cw OPOs and cw DFG. Widely tunable green-pumped OPOs have been developed by using fan-out grating structure for the first time in different nonlinear materials, and a high-power cw source in the mid-IR has been developed by exploiting DFG. The sources developed in this thesis cover a wavelength range spanning 677-2479 nm. One of the OPOs developed in this work has also been deployed in an industrial environment in a device characterization setup. In green-pumped OPOs, we demonstrate a widely tunable cw OPO based on PPKTP in a fan-out grating structure. The OPO is continuously tunable across 742-922 nm in the signal, and 1258-1884 nm in the idler. Resonant wave output coupling has been deployed to extract useful signal power and reduce the thermal load, and the OPO can deliver up to 1.65 W of total output power. The use of output coupling results in superior performance of the OPO over pure singly-resonant oscillator (SRO) configuration. We also develop the first green-pumped OPO based on MgO:cPPLT. Continuous wavelength tuning across 689-1025 nm in the signal and 1106-2336 nm in the idler at room temperature has been achieved in the nanosecond OPO by using a fan-out grating structure. The OPO can provide up to 131 mW of average output power at 25 kHz repetition rate, and the idler passive power stability is 3.9% rms over 30 minutes. A cw OPO based on MgO:PPLN in a fan-out grating design is then described. The OPO is continuously tunable across 813-1032 nm in the signal and 1098-1539 nm in the idler. A short crystal length and signal output coupling are used to minimise thermal effects, and the OPO can generate up to 710 mW of total output power with signal and idler passive power stabilities better than 2.8% rms and 1.8% rms, respectively over 1 hour and signal M^2<1.1. As a part of an industrial internship, a cw green-pumped MgO:PPLN OPO is developed at Radiantis. The OPO is used as the input light source of a device characterization setup to test sensors for the aerospace sector. Compared to the existing light source, using the OPO results in orders-of magnitude-higher response of the InGaAs sensor, leading to a more precise and accurate characterization, and lower measurement error, thus improving the device evaluation process. Finally, we demonstrate a high-power cw source at 2.26 µm using the DFG process. The source can deliver up to 3.84 W of output power at 2262 nm, with a power stability better than 0.6% rms over 1 hour, in a Gaussian mode profile with M^2<1.2.

  • TAGLIABUE, SUSANNA: Comprehensive monitoring of the injured brain by hybrid diffuse optics: towards brain-oriented theranostics
    Author: TAGLIABUE, SUSANNA
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Temporary seizure
    Reading date: 29/04/2022
    Thesis director: DURDURAN, TURGUT | KACPRZAK, MICHAL

    Committee:
         PRESIDENT: BHATTACHARYA, NANDINI
         SECRETARI: GARCÍA DE ARQUER, FRANCISCO PELAYO
         VOCAL: GIACALONE, GIACOMO
    Thesis abstract: In the intensive care, the multimodal monitoring of the patient is crucial. The systemic physiology is routinely and comprehensively monitored but the practical monitoring of the brain is lacking. Hybrid diffuse optics (DO) has a potential to fill this gap by combining diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS). DO measures local, microvascular cerebral perfusion/blood flow, oxygen extraction fraction and cerebral metabolic rate of oxygen. Therefore, the overarching purpose of this work was to boost the use of hybrid DO by validating its utility in clinical applications on the human brain, especially in critically ill populations. To achieve this goal, new hybrid DO devices were constructed to enhance the data-rate and the quantification of the intracerebral signals while synchronously acquiring data from clinical monitors. In particular, a new platform combining time-resolved NIRS (TRS) and fast (~40 Hz) DCS was constructed.These were used in the fruitful collaborations with the Vall d'Hebron hospital on different patient cohorts. In a population of patients undergoing surgeries the relationship with electrophysiological assessment of cerebral metabolism, the proprietary bispectral index, and the optically-derived parameters were investigated during propofol-induced anesthesia. This has shown that DO estimates of the oxygen metabolism correlate with this index. The additional DO information could be investigated to evaluate if it can help prevent brain damage due to anesthesia.A cohort of children diagnosed with benign external hydrocephalus undergoing invasive intracranial pressure (ICP) monitoring were monitored during night sleep. This allowed the quantification of the cerebral hemodynamics and metabolism during ICP waves that are indicative of future morbidity in them. This has revealed that ICP waves are associated with hemodynamic and metabolic oscillations. Furthermore, these results have shown that the presence of ICP waves, in particular B-waves, can be observed by DO monitoring which could, in the future, allow their noninvasive assessment in wider populations. An important shortcoming for the routine clinical use of DO has been that the results from commercial NIRS devices on clinical population are not reproducible, often give physiologically invalid results and differ between systems. Apart from the limitations due to the use of continuous-wave light, one major culprit is brain heterogeneity and underlying morphological and functional abnormalities. A comprehensive analysis was carried out using data from different cohorts of brain-injured patients to provide a set of examples and suggestions to establish quality control routines. Hyperventilation is a relatively common therapy, where a decrease in blood carbon-dioxide is induced to cause vasoconstriction in order to lower ICP. Since high ICP often leads to hypoperfusion and hypoxia, this treatment is meant to be beneficial but the findings from clinical practice and large trials provide mixed results. It is hypothesized that this is due to some patients suffering from misery perfusion (MP). Hybrid DO can evaluate whether the therapy causes MP. This was tested in a cohort of patients using advanced statistical methods. The findings indicate that MP is common in these patients and DO can characterize its frequency and magnitude. This paves the way for future clinical-trials to validate the findings and evaluate the efficacy.Other protocols were also carried out as small pilot studies such as during blood transfusion. The results are reported and their potential significance is elucidated. Overall, the versatility of the hybrid DO was demonstrated and new biomarkers were proposed to develop indices that are relevant to the clinicians. These proof-of-principle studies will serve as a backbone for clinical trials and, hopefully in the close future, to the exploitation of this technology in all intensive care units.

  • VENTURINI, VALERIA: Mechanisms and functions of the nucleus as a mechano-controller of cell contractility and migration plasticity
    Author: VENTURINI, VALERIA
    Thesis link: http://hdl.handle.net/10803/674242
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Reading date: 08/04/2022
    Thesis director: WIESER, STEFAN | RUPRECHT, VERENA

    Committee:
         PRESIDENT: ROCA-CUSACHS SOULERE, PERE
         SECRETARI: LOZA ALVAREZ, PABLO
         VOCAL: RENKAWITZ, JÖRG
    Thesis abstract: Living tissues are crowded and dynamic environments, in which signalling molecules and physical forces constantly act on single cells. To ensure correct tissue development and homeostasis, cells function like small processors: they measure and integrate the various mechano-chemical inputs they receive from their surrounding. As an output, cells translate this information into specific signalling pathways controlling their behavior, cell specification or their physical properties, among others. %Cells can detect changes in chemicals and signalling molecules thanks to specific receptors on their surface, and the associated signalling cascades have been well characterized. In particular, as tissues are built, when external stresses are applied, or when cells rearrange and move, single cells can undergo dynamic shape deformations. Previous studies showed that large cell deformations in confined environments control cellular contractility by tuning myosin II motor protein activity and can transform various cell types into a novel amoeboid phenotype, termed stable-bleb. Still, how single cells can sense shape changes and, as a consequence, tune myosin II activity and cell behaviour remained unknown.Here, by combining planar micro-confinement assays with live cell fluorescence microscopy and quantitative image analysis, we performed a systematic study to characterize the response of progenitor stem cells derived from zebrafish embryos to mechanical shape deformations. By quantifying cellular contractility levels in various conditions and by interfering with specific signalling pathway, we then aimed to identify the mechano-sensitive mechanism that allows cells to sense and respond to shape changes. We found that cells can measure different degrees of confinement, which accordingly defines their contractility set-point. We discovered that the nucleus, the largest cellular organelle, acts as an intracellular mechano-sensor for large cell shape changes. Nucleus deformation induced an unfolding of the inner nuclear membrane, which controls the activity of cytosolic phospholipase A2 (cPLA2) in the nucleus. When active, cPLA2 triggers the release of arachidonic acid that activates myosin II through the Rho/ROCK pathway. As a result, the nucleus allows single cells to accurately and dynamically sense shape deformations and controls cellular contractility and migration plasticity under external force load. This process, further equips cells with an "escape reflex mechanism" that allows migration away from confined environments. Moreover, the combination of inner nuclear membrane unfolding and intracellular nucleus positioning, allows cells to sense and distinguish different shape deformations, as anisotropic cell compression versus isotropic swelling, through the same mechano-sensitive pathway. Our data support that the nucleus establishes a functional module for cellular mechano-transduction, enabling cells to sense and interpret different types of shape changes and to dynamically adapt their behavior to mechanical forces in the 3D microenvironment.

Last update: 20/05/2022 05:00:32.

Theses related publications

AUTHOR:VENTURINI, VALERIA
Title:Mechanisms and functions of the nucleus as a mechano-controller of cell contractility and migration plasticity
Reading date:08/04/2022
Tutor/a:SEWELL, ROBERT
Director:WIESER, STEFAN
Co-director:RUPRECHT, VERENA
Mention:No mention
RELATED PUBLICATIONS
Direct force measurements of subcellular mechanics in confinement using optical tweezers
Català, F.; Venturini, V.; Ruprecht, Verena; Krieg, Michael
Journal of visualized experiments, ISSN: 1940-087X (JCR Impact Factor-2020: 1.355; Quartil: Q3)
Publication date: 31/08/2021
Journal article

How do Cells Sense Physical Forces? Cellular Mechanosensing and Motility in Biomimetic 3D Environments
Joint 12th EBSA – 10th ICBP-IUPAP BIOPHYSICS CONGRESS
Presentation date: 07/2019
Presentation of work at congresses

AUTHOR:SUKEERT, SUKEERT
Title:Versatile nonlinear frequency conversion sources in the near- and mid-infrared
Reading date:09/03/2022
Director:EBRAHIM-ZADEH, MAJID
Mention:No mention
RELATED PUBLICATIONS
Widely tunable room-temperature continuous-wave optical parametric oscillator based on periodically-poled KTiOPO4
Devi, K.; Padhye, A.; Sukeert, S.; Ebrahim-Zadeh, M.
Optics express, ISSN: 1094-4087 (JCR Impact Factor-2020: 3.894; Quartil: Q1)
Publication date: 19/08/2019
Journal article

Green-pumped optical parametric oscillator based on fan-out grating periodically-poled MgO-doped congruent LiTaO3
Sukeert, S.; Kumar, S. Chaitanya; Ebrahim-Zadeh, M.
Optics letters, ISSN: 0146-9592 (JCR Impact Factor-2020: 3.776; Quartil: Q1)
Publication date: 01/12/2019
Journal article

Green-pumped continuous-wave parametric oscillator based on fanout–grating MgO:PPLN
Sukeert, S.; Kumar, S. Chaitanya; Ebrahim-Zadeh, M.
Optics letters, ISSN: 0146-9592 (JCR Impact Factor-2020: 3.776; Quartil: Q1)
Publication date: 01/12/2020
Journal article

High-Power, Continuous-Wave, Fiber-Pumped Difference-Frequency-Generation at 2.26 µm
Sukeert, S.; Kumar, S. Chaitanya; Ebrahim-Zadeh, M.
IEEE photonics technology letters, ISSN: 1041-1135 (JCR Impact Factor-2020: 5.5
Publication date: 15/06/2021
Journal article

High-power continuous-wave mid-infrared difference-frequency generation in the presence of thermal effects
Sukeert, S.; Kumar, S. Chaitanya; Ebrahim-Zadeh, M.
Journal of the Optical Society of America B. Optical physics, ISSN: 0740-3224 (JCR Impact Factor-2020: 3.9
Publication date: 01/08/2021
Journal article

Widely tunable, green -pumped, visible and near-infrared continuous-wave optical parametric oscillator based on fan-out-grating PPKTP
8th EPS-QEOD Europhoton conference
Presentation date: 06/09/2018
Presentation of work at congresses

Green-pumped optical parametric oscillator based on fan-out-grating periodically-poled Mg-doped congruent LiTaO3
2019 Conference on Lasers & Electro-Optics/Europe and the European Quantum Electronics Conference
Presentation date: 27/06/2019
Presentation of work at congresses

Green-pumped optical parametric oscillator based on fanout-grating periodically-poled Mg-doped congruent LiTaO3
2019 IEEE Photonics Conference
Presentation date: 02/10/2019
Presentation of work at congresses

Rapidly Tunable Continuous-wave Green-pumped Optical Parametric Oscillator Based on Fanout MgO:PPLN
2020 Conference on Lasers and Electro-Optics: Science and Innovation
Presentation date: 12/05/2020
Presentation of work at congresses

Continuous-wave green-pumped optical parametric oscillator based on fanout MgO:PPLN
2020 IEEE Photonics Conference
Presentation date: 29/09/2020
Presentation of work at congresses

High-Power Fiber-Pumped Continuous-Wave Difference-Frequency-Generation at 2.26 µm
2021 Conference on Lasers & Electro-Optics / European Quantum Electronics Conference
Presentation date: 25/06/2021
Presentation of work at congresses

Continuous-wave high-power fiber-based difference-frequency-generation at 2.26 µm
2021 IEEE Photonics Conference
Presentation date: 18/10/2021
Presentation of work at congresses

AUTHOR:BIANCHET, LORENA CECILIA
Title:A versatile system for the study of light-matter interactions at the level of individual particles
Reading date:25/02/2022
Director:MITCHELL, MORGAN
Mention:No mention
RELATED PUBLICATIONS
Simultaneous tracking of spin angle and amplitude beyond classical limits
Colangelo, G.; Ciurana, F.; Bianchet, L.; Sewell, R.; Mitchell, M.W.
Nature, ISSN: 0028-0836 (JCR Impact Factor-2020: 0.0
Publication date: 03/2017
Journal article

Maltese cross coupling to individual cold atoms in free space
Bruno, N.; Bianchet, L.; Prakash, V.; Li, N.; Alves, N.; Mitchell, M.W.
Optics express, ISSN: 1094-4087 (JCR Impact Factor-2019: 6.7
Publication date: 14/10/2019
Journal article

Narrowband photon pairs with independent frequency tuning for quantum light-matter interactions
Prakash, V.; Bianchet, L.; Torrent, M.; Gomez, P.; Bruno, N.; Mitchell, M.W.
Optics express, ISSN: 1094-4087 (JCR Impact Factor-2019: 6.7
Publication date: 23/12/2019
Journal article

Manipulating and measuring single atoms in the Maltese cross geometry
Bianchet, L.; Natalia, A.; Zarraoa, L.; Bruno, N.; Mitchell, M.W.
Open Research Europe, ISSN: 2732-5121
Publication date: 06/09/2021
Journal article

POSTER - Toward interaction of a single trapped ^87Rb atom with pairs of single photons
Quantum Optics VIII
Presentation date: 26/10/2016
Presentation of work at congresses

POSTER - A versatile Neutral-atom microtrap using high NA optics to study light-matter interaction
CEWQO - Central European Workshop in Quantum Optics
Presentation date: 23/05/2018
Presentation of work at congresses

POSTER- A versatile Neutral-atom microtrap using high NA optics to study light-matter interaction
ICAP - International Conference in Atomic Physics
Presentation date: 07/2018
Presentation of work at congresses

POSTER - A versatile neutral-atom microtrap to study light-matter interaction at the single particle level
Quantum Optics ix
Presentation date: 10/2018
Presentation of work at congresses

ORAL - A versatile neutral-atom microtrap to study light-matter interaction at the single particle level
Advances in Quantum Simulation With Ultracold Atoms
Presentation date: 11/2018
Presentation of work at congresses

ORAL - Quantum jump spectroscopy: how to interrogate a single atom
Cold Atoms Meeting
Presentation date: 10/2020
Presentation of work at congresses

AUTHOR:ÖZDEMIR, ONUR
Title:Further Into the Infrared With Quantum Dot Photodetectors
Reading date:04/02/2022
Director:KONSTANTATOS, GERASIMOS
Mention:No mention
RELATED PUBLICATIONS
High Sensitivity Hybrid PbS CQD-TMDC Photodetectors up to 2 µm
Özdemir, O.; Konstantatos, G.
ACS photonics, ISSN: 2330-4022 (JCR Impact Factor-2019: 6.864; Quartil: Q1)
Publication date: 16/10/2019
Journal article

Mid- and long-wave infrared optoelectronics via intraband transitions in PbS Colloidal Quantum Dots
Ramiro, I.; Özdemir, O.; Christodoulou, S.; Gupta, S.; Dalmases, M.; Torre, I.; Konstantatos, G.
Nano letters, ISSN: 1530-6984 (JCR Impact Factor-2020: 11.189; Quartil: Q1)
Publication date: 12/02/2020
Journal article

Size- and temperature-dependent intraband optical properties of heavily n-doped PbS colloidal quantum dot solid-state films
Ramiro, I.; Kundu, B.; Dalmases, M.; Özdemir, O.; Pedrosa, M.; Konstantatos, G.
ACS nano, ISSN: 1936-0851 (JCR Impact Factor-2020: 15.881; Quartil: Q1)
Publication date: 23/06/2020
Journal article

Single-exciton gain and stimulated emission across the infrared telecom band from robust heavily doped PbS colloidal quantum dots
Christodoulou, S.; Ramiro, I.; Othonos, A.; Dalmases, M.; Özdemir, O.; Pradhan, S.; Itskos, Grigorios; Konstantatos, G.
Nano letters, ISSN: 1530-6984 (JCR Impact Factor-2020: 11.189; Quartil: Q1)
Publication date: 12/08/2020
Journal article

Hybrid 2D-QD MoS2–PbSe Quantum Dot Broadband Photodetectors with High-Sensitivity and Room-Temperature Operation at 2.5 µm
Özdemir, O.; Konstantatos, G.
Advanced optical materials, ISSN: 2195-1071 (JCR Impact Factor-2019: 10.7
Publication date: 12/09/2021
Journal article

Intraband Mid and Long Wave Infrared PbS Colloidal Quantum Dot Photodetectors Enabled by Robust Heavy Doping
MRS Fall Meetings and Exhibits 2019
Presentation date: 04/06/2019
Presentation of work at congresses

AUTHOR:PÉREZ SALINAS, DANIEL
Title:Inhomogeneity and disorder in ultrafast phase transitions
Reading date:31/01/2022
Director:WALL, SIMON ELLIOT
Mention:No mention
RELATED PUBLICATIONS
Imaging nanometer phase coexistence at defects during the insulator–metal phase transformation in VO2 thin films by resonant soft X-ray holography
Vidas, L.; Günther, C.; Miller, T.; Pérez, D.; Martinez, E.; Wall, S.
Nano letters, ISSN: 1530-6984 (JCR Impact Factor-2019: 20.5
Publication date: 16/05/2018
Journal article

Study of second and third harmonic generation from an indium tin oxide nanolayer: Influence of nonlocal effects and hot electrons
Rodriguez, L.; Scalora, Michael; Johnson, A. S.; Cojocaru, C.; Akozbek, N.; Coppens, Z. J.; Pérez, D.; Wall, S.; Trull, J.
APL Photonics, ISSN: 2378-0967 (JCR Impact Factor-2020: 5.672; Quartil: Q1)
Publication date: 03/01/2020
Journal article

Does Vo2 host a transient monoclinic metallic phase?
Vidas, L.; Martinez, E.; Pérez, D.; Wall, S.
Physical Review X, ISSN: 2160-3308 (JCR Impact Factor-2020: 15.762; Quartil: Q1)
Publication date: 27/08/2020
Journal article

Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide
Günther, C.; Wall, S.; Pérez, D.; Johnson, A. S.
Science advances, ISSN: 2375-2548 (JCR Impact Factor-2019: 25.2
Publication date: 13/08/2021
Journal article

Second harmonic generation from an ITO nanolayer: experiment versus theory
Nanophotonics VIII
Presentation date: 01/04/2020
Presentation of work at congresses

AUTHOR:CASTILLA GÓMEZ, MANUEL SEBASTIÁN
Title:Photodetectors based on graphene pn-junctions for mid-infrared and terahertz range
Reading date:27/01/2022
Director:KOPPENS, FRANK
Mention:No mention
RELATED PUBLICATIONS
Nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy
Castilla, S.
Physical review. B., ISSN: 2469-9950 (JCR Impact Factor-2019: 6.6
Publication date: 13/02/2019
Journal article

Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction
Castilla, S.; Nikitin, A.; Koppens, F.
Nano letters, ISSN: 1530-6984 (JCR Impact Factor-2019: 20.5
Publication date: 08/05/2019
Journal article

Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene
Castilla, S.; Vangelidis, I.; Pusapati, V.; Autore, M.; Slipchenko, T.; Rajendran, K.; Kim, S.; Watanabe, K.; Taniguchi, T.; Martín-Moreno, L.; Englund, D.; Tielrooij, Klaas-jan; Hillenbrand, Rainer; Lidorikis, E.; Koppens, F.
Nature communications, ISSN: 2041-1723 (JCR Impact Factor-2020: 14.919; Quartil: Q1)
Publication date: 12/2020
Journal article

Plasmonics of supported nanoparticles reveals adhesion at the nanoscale: implications for metals on dielectrics
Lazzari, R.; Castilla, S.
ACS Applied Nano Materials, ISSN: 2574-0970 (JCR Impact Factor-2020: 5.097; Quartil: Q2)
Publication date: 24/12/2020
Journal article

Highly sensitive, ultrafast photo-thermoelectric graphene THz detector
43rd International Conference on Infrared Millimeter and Terahertz Waves
Presentation date: 09/09/2018
Presentation of work at congresses

Bound in the continuum modes in indirectly-patterned hyperbolic media
2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference
Presentation date: 21/06/2021
Presentation of work at congresses

AUTHOR:PRAKASH, VINDHIYA
Title:NARROWBAND PHOTON PAIRS FOR ATOMS: HIGH RESOLUTION SPECTRAL ENGINEERING AND CHARACTERISATION
Reading date:16/12/2021
Director:MITCHELL, MORGAN
Mention:No mention
RELATED PUBLICATIONS
Autoheterodyne Characterization of Narrow-Band Photon Pairs
Prakash, V.
Physical review letters, ISSN: 0031-9007 (JCR Impact Factor-2019: 15.6
Publication date: 19/07/2021
Journal article

A system to interact entangled photon pairs with individual atoms.
Quantum Optics Conference 2018
Presentation date: 01/03/2018
Presentation of work at congresses

Exploring Two Photon Processes Mediated by an Atom
International Conference on Atomic Physics
Presentation date: 25/07/2018
Presentation of work at congresses

CORRELATED PHOTON PAIRS WITH INDEPENDENT FREQUENCY TUNEABILITY FOR COLD ATOM EXPERIMENTS.
Quantum 2019
Presentation date: 27/05/2019
Presentation of work at congresses

Tuneable, Narrowband, Entangled Photons interfaced with Atomic Systems
Conference on Lasers & Electro-Optics / European Quantum Electronics Conference 2019
Presentation date: 24/06/2019
Presentation of work at congresses

Correlated Photons with Independent Frequency Tuneability for Cold Atom Experiments
Young Atom Opticians conference
Presentation date: 29/07/2019
Presentation of work at congresses

A versatile system to study light matter interactions at the level of single quanta
Barcelona Cold Atoms Workshop
Presentation date: 06/02/2020
Presentation of work at congresses

Narrowband Photon Pairs with Independent Frequency Tuneability for Cold Atom Experiments
7th Annual Bristol Quantum Information Technologies Workshop
Presentation date: 27/04/2020
Presentation of work at congresses

HOM interference between distinguishable photons?
8th Annual Bristol Quantum Information Technologies Workshop
Presentation date: 27/04/2021
Presentation of work at congresses

Tricks with atom-resonant quantum light: tailored photons and squeezed-light-enhanced atomic magnetometry.
Workshop on Quantum Interaction of Distant Objects & Applications of Optically Connected Atoms and Nanoparticles
Presentation date: 22/10/2021
Presentation of work at congresses

AUTHOR:MORENO MENCÍA, DAVID
Title:The application of broadband ultrafast spectroscopy to reveal structural, magnetic and electronic dynamics in quantum materials.
Reading date:22/11/2021
Director:WALL, SIMON ELLIOT
Mention:No mention
RELATED PUBLICATIONS
Non-equilibrium dynamics of the prototypical Mott insulator V2O3
ICFOday poster competition
Presentation date: 12/2018
Presentation of work at congresses

Disentangling electron and phonon dynamics in Mott insulating Sr3Ir2O7
ICFOday poster competition
Presentation date: 12/2019
Presentation of work at congresses

AUTHOR:MARTÍNEZ-DENEGRI SÁNCHEZ, GUILLERMO
Title:LIGHT HARVESTING AND ENERGY EFFICIENCY IN PEROVSKITE SOLAR CELLS AND THEIR APPLICATIONS
Reading date:29/09/2021
Director:MARTORELL PENA, JORDI
Mention:No mention
RELATED PUBLICATIONS
Relation between Fluorescence Quantum Yield and Open-Circuit Voltage in Complete Perovskite Solar Cells
Kramarenko, M.; Ferreira, C.; Martínez-denegrí, G.; Sansierra, C.; Toudert, J.; Martorell, J.
Solar RRL, ISSN: 2367-198X (JCR Impact Factor-2020: 8.582; Quartil: Q1)
Publication date: 04/2020
Journal article

Stabilization of the J-V characteristic of a perovskite solar cell using an intelligent control loop
Bheesayagari, C.; Martínez-denegrí, G.; Orpella, A.; Pons, J.; Bermejo, S.; Alcubilla, R.; Martorell, J.; Dominguez, M.
Electronics (Switzerland), ISSN: 2079-9292 (JCR Impact Factor-2020: 2.397; Quartil: Q3)
Publication date: 02/01/2021
Journal article

AUTHOR:MUÑOZ GIL, GORKA
Title:Anomalous diffusion: from life to machines
Reading date:09/11/2020
Director:LEWENSTEIN, MACIEJ
Co-director:GARCÍA MARCH, MIGUEL ANGEL
Mention:No mention
RELATED PUBLICATIONS
Restricted Boltzmann machines as variational wave functions
Annual Barcelona cold atom meeting 2020
Presentation date: 06/02/2020
Presentation of work at congresses

Certificates of many-body quantum properties assisted by machine learning
Quantum techniques in machine learning
Presentation date: 11/11/2020
Presentation of work at congresses

Research projects

START DATEEND DATEACTIVITYFINANCING ENTITY
01/01/201831/12/2020Células solares con contactos posteriores basadas en substratos delgados de silicio cristalinoAGENCIA ESTATAL DE INVESTIGACION
01/12/201727/12/2017Prestación de servicios COSENTINOCOSENTINO RESEARCH AND DEVELOPMENT
01/01/201731/12/2021ICREA ACADEMIA 2016-04INSTITUCIO CAT DE RECERCA I
01/01/201731/12/20192017 SGR 1400 Nonlinear and Quantum Photonics GroupAGAUR. Agència de Gestió d'Ajuts Universitaris i de Recerca
17/06/201617/06/2016Procedimiento para la fabricación de resonadores esferoidales sobre un substrato monocristalino.
01/06/201631/05/2019Reducció energètica i flexibilitat en edificis en rehabilitacióACC10
01/01/201631/12/2018Explotación de las propiedades de las ondas de DyakonovMinisterio de Ciencia e Innovación
01/10/201530/09/2016BEQUES DOCTORAT FUND.LA CAIXA 2015-2FUNDACIO LA CAIXA
01/03/201528/02/2018Células y módulos de alta eficiencia basadas en el silicio negro y técnicas de eliminación de defectosMIN DE ECONOMIA Y COMPETITIVIDAD
01/01/201531/12/2017Células solares de silicio cristalino con contactos posteriores basadas en el procesado láser de capas dieléctricasMIN DE ECONOMIA Y COMPETITIVIDAD

Teaching staff and research groups

Research groups

UPC groups:

Research projects

START DATEEND DATEACTIVITYFINANCING ENTITY
01/01/201831/12/2020Células solares con contactos posteriores basadas en substratos delgados de silicio cristalinoAGENCIA ESTATAL DE INVESTIGACION
01/12/201727/12/2017Prestación de servicios COSENTINOCOSENTINO RESEARCH AND DEVELOPMENT
01/01/201731/12/2021ICREA ACADEMIA 2016-04INSTITUCIO CAT DE RECERCA I
01/01/201731/12/20192017 SGR 1400 Nonlinear and Quantum Photonics GroupAGAUR. Agència de Gestió d'Ajuts Universitaris i de Recerca
17/06/201617/06/2016Procedimiento para la fabricación de resonadores esferoidales sobre un substrato monocristalino.
01/06/201631/05/2019Reducció energètica i flexibilitat en edificis en rehabilitacióACC10
01/01/201631/12/2018Explotación de las propiedades de las ondas de DyakonovMinisterio de Ciencia e Innovación
01/10/201530/09/2016BEQUES DOCTORAT FUND.LA CAIXA 2015-2FUNDACIO LA CAIXA
01/03/201528/02/2018Células y módulos de alta eficiencia basadas en el silicio negro y técnicas de eliminación de defectosMIN DE ECONOMIA Y COMPETITIVIDAD
01/01/201531/12/2017Células solares de silicio cristalino con contactos posteriores basadas en el procesado láser de capas dieléctricasMIN DE ECONOMIA Y COMPETITIVIDAD

Quality

The Validation, Monitoring, Modification and Accreditation Framework (VSMA Framework) for official degrees ties the quality assurance processes (validation, monitoring, modification and accreditation) carried out over the lifetime of a course to two objectives—the goal of establishing coherent links between these processes, and that of achieving greater efficiency in their management—all with the overarching aim of improving programmes.

Validation

Monitoring

    Modification

    Registry of Universities, Centers and Degrees (RUCT)

    Indicators

    Up