Open day 2024

Why take a doctoral degree at the UPC

Because of Excellence

The UPC is listed in the main international rankings as one of the top technological and research universities in southern Europe and is among the world's 40 best young universities.

Its main asset: people

Satisfaction with the work of the thesis supervisor is highlighted by 7 out of 10 UPC doctoral students. Support and availability get the best ratings.

Internationalisation

More than half of the students of the UPC’s Doctoral School are international and a third obtain the International Doctorate mention.

 

Graduate employment of a high quality

Almost all UPC doctoral degree holders are successful in finding employment, mostly in jobs related to their degree.

The best industrial doctorate

The UPC offers the most industrial doctoral programmes in Catalonia (a third) with a hundred companies involved.

The industrial setting

The UPC’s location in an especially creative and innovative industrial and technological ecosystem is an added value for UPC doctoral students.

Theses for defense agenda

Reading date: 09/05/2024

  • MESA GÓMEZ, ADRIANA MARÍA: Analysis and modelling of natech accidents originated by strong winds
    Author: MESA GÓMEZ, ADRIANA MARÍA
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN CHEMICAL PROCESS ENGINEERING
    Department: Department of Chemical Engineering (EQ)
    Mode: Change of supervisor
    Deposit date: 11/04/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: CASAL FABREGA, JOAQUIM | MUÑOZ GIRALDO, FELIPE | SANCHEZ SILVA, EDGAR MAURICIO
    Committee:
         PRESIDENT: PLANAS CUCHI, EULALIA
         SECRETARI: PALACIOS ROSAS, ADRIANA
         VOCAL: DEMICHELA, MICAELA
    Thesis abstract: In recent decades, there has been an increase in the frequency of natural events, coinciding with the simultaneous development of industrial activities in many countries. Consequently, the frequency of Natech accidents, which are technological disasters triggered by natural hazards, has also risen. This trend has spurred researchers to explore new risk analysis methods to prevent and mitigate potential damage to populations, the environment, and industrial facilities. There is a growing awareness in the literature about the impact of natural events, particularly when they occur concurrently, cascade, or accumulate over time.This thesis proposes a research initiative to conduct a risk assessment that includes the Natech risk associated with strong winds. The primary objective is to develop a methodology for analyzing Natech risk in storage units in coastal zones that are particularly vulnerable to extreme weather events.Firstly, the thesis introduces the integration of natural events, specifically strong winds, into a quantitative Natech risk analysis methodology. This integration represents a significant advancement in assessing the potential impacts of technological accidents triggered by natural events. By incorporating strong winds as a hazard, the methodology offers a more comprehensive approach to evaluating the vulnerability of industrial facilities, especially storage tanks, to natural-technological events. This integration enables stakeholders to better understand and quantify the risks posed by Natech events involving strong winds, facilitating the implementation of targeted mitigation measures and enhancing preparedness. Ultimately, it contributes to improving the resilience of industrial facilities and surrounding communities to the risks posed by natural events.Secondly, the thesis describes the development of two models for environmental and socioeconomic risk assessment, respectively. These models provide a comprehensive framework for evaluating the potential environmental and socioeconomic impacts of Natech events, thereby enhancing the understanding of the overall risk landscape. By incorporating previously overlooked vulnerable elements, such as cultural heritage sites, sensitive environmental areas, water catchment sites, and so on, the models offer a more holistic perspective on Natech risks, ensuring that mitigation strategies can protect not only human safety and infrastructure, but also socioeconomic and environmental assets.Thirdly, the thesis outlines the development of a computational tool designed to facilitate the implementation of these models. This tool streamlines the risk assessment process, enabling stakeholders to analyze and manage Natech risks efficiently.Overall, the generation of these models and the accompanying computational tool represents a significant advancement in Natech risk management. By integrating environmental and socioeconomic considerations into the risk assessment process, these models provide a more robust foundation for decision-making and emergency preparedness, ultimately contributing to the resilience of communities and ecosystems in the face of Natech events. Finally, the methodology is applied in a case study to verify its applicability
  • RALLIS, KONSTANTINOS: Novel Nanoelectronic Circuits and Systems
    Author: RALLIS, KONSTANTINOS
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ELECTRONIC ENGINEERING
    Department: Department of Electronic Engineering (EEL)
    Mode: Normal
    Deposit date: 13/03/2024
    Reading date: 09/05/2024
    Reading time: 11:00
    Reading place: ETSETB - Multimedia room Building B3 at Campus Nord UPC
    Thesis director: RUBIO SOLA, JOSE ANTONIO | SIRAKOULIS, GEORGIOS
    Committee:
         PRESIDENT: JIMÉNEZ JIMÉNEZ, DAVID
         SECRETARI: ABADAL CAVALLÉ, SERGI
         VOCAL: CUCU LAURENCIO, NICOLETA
    Thesis abstract: Lately, in the rise of the era of 2D materials, Graphene is one of the materials that has been extensively investigated for its possible integration in computing devices and thus computing circuits. This is mainly attributed to its very wide set of appealing properties. The combination of its electronic properties with others, such as mechanical, optical or chemical properties, can extend the range of use of computing devices and lead to groundbreaking interdisciplinary applications. However, this integration of Graphene in switching and computing elements is not easy. In this dissertation, the Non-Equilibrium Green's Function method (NEGF), along with the Tight Binding Hamiltonians, are fitted on experimental data from fabricated Graphene devices. Although as a computational method, NEGF is appropriate for the simulation of small-scale devices in the regime of nanometers, its ability to be efficiently expanded for the description of larger devices is presented. The aforementioned electronic properties of the material are highly related to its shape and structure. Consequently, it requires a very precise fabrication method that can guarantee the minimum presence of defects on the Graphene grid. For that reason, the effect of defects is deeply investigated. The NEGF method is further enhanced in order to be able to incorporate lattice defects. The most common lattice defects are included, meaning the single and double vacancy. A framework has thus been created, so that for the first time the user can select areas of interest on the grid, in which the defects will be concentrated. Those concentrations can also be variable. Moreover, an extensive study is conducted on defective grids with different concentrations of single and double vacancies. The investigated grids are non-rectangular and have regions with different widths. The effect of those vacancies on the electronic properties of Graphene is investigated, and more specifically their effect on the conductance and the energy gap of the device, as well as the effect on circuit-centered characteristics such as the leakage current and ON/OFF current ratio. Having a functional, robust, versatile, and accurate model, the focus of this thesis is extended to the level of circuits. The model is imported into SPICE through Verilog-A. In this part, the thesis emphasizes on the investigation of the switching capabilities of L-shaped Graphene Nanoribbons (GNRs). These structures have been proven to be able to operate as switches, without the use of a back gate, and here, the properties that are dependent on their dimensions are explored and optimized for the first time. The optimized structures are then used for the realization of a set of computing topologies. Initially, a novel area-optimized 2-branch comb-shaped topology is introduced for the realization of a universal computing set that consists of an AND, OR, NOT gate, and a Buffer. All these logic operations can be mapped on the same topology through appropriate biasing. Then, an extension of this, the 3-branch comb-shaped topology is proposed, which is able to operate as a 2-XOR, 3-XOR and 3-MAJ gate. The circuit of a 1-bit full adder, is also presented. For the evaluation of the performance of the topologies, several related metrics are employed such as the area, delay, power dissipation and the power-delay product. The operation of these topologies relies of the principles of Pass Transistor Logic (PTL) and reconfigurable computing. Finally, in an attempt to go beyond the conventional Boolean logic, the compliance of Graphene with Multi-Valued Logic (MVL) circuits and applications is investigated. The ability of a Graphene Quantum Point Contact (G-QPC) device to encode the digits of the radix-4 numeral system is presented and as a proof of concept, the operation of an arbitrary radix-4 adder is explained.
  • SAYOLS BAIXERAS, NARCÍS: Cognitive Robot Control Strategies for Complex Surgical Environments
    Author: SAYOLS BAIXERAS, NARCÍS
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN BIOMEDICAL ENGINEERING
    Department: Department of Automatic Control (ESAII)
    Mode: Normal
    Deposit date: 11/04/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: CASALS GELPI, ALICIA | HERNANSANZ PRATS, ALBERTO
    Committee:
         PRESIDENT: DALL\'ALBA, DIEGO
         SECRETARI: FRIGOLA BOURLON, MANEL
         VOCAL: AVILÉS RIVERO, ANGÉLICA
    Thesis abstract: This thesis aims to contribute to the development of robotics autonomy in complex tasks based on the cognitive control paradigm. Cognition is a multidisciplinary approach aimed to provide robotic systems with intelligent and autonomous behaviour that should learn and reason about how to respond in front of complex tasks and environments.Cognition involves aspects as perception, awareness, interpretation of human actions, learning, planning, anticipating and dynamic response to changes in the working conditions and in the interaction with humans. Autonomy is intended to partially substitute and/or complement the human faculties at the level of perception, analysis and execution. Increasing the level of autonomy of robots allows focusing the humans cognitive load on high level decisions and actions, in aspects where the human factor is essential: contextualisation of information, specific expertise, medical knowledge and complex decision-making among others. Furthermore, robots improve the properties of humans in certain aspects such as precision, repeatability, absence of fatigue or response efficiency in terms of time and accuracy.This thesis addresses different key aspects of robotic autonomy: perception, planning and dynamic execution of actions and, finally, the control structures required for efficient control and their integration in robotic systems.This thesis combines a global theoretical approach supported by practical applications based on the field of robot-assisted minimally invasive surgery. This field has been chosen for two main reasons: the social impact involved in the improvement of surgery and, secondly, because this field of application is highly demanding from both, human and robotic perspective.The experimental phases have focused on various surgical robotic. First, a teleoperated platform with a single robot has been used aimed at minimally invasive fetal surgery in which a cognitive system offers a certain level of autonomy to generate trajectories in collision-free spaces, increasing patient safety and decreasing the cognitive load of surgeons in navigation and interaction tasks within the intra-uterine region. Second, a multi-robot architecture to execute auxiliary actions in a human-robot cooperative system: the main surgeon performs the surgical actions while the auxiliary robots perform, autonomously, auxiliary surgical tasks. With this configuration the experimentation focuses on minimally invasive radical prostatectomy surgery.Thus, the thesis addresses the perception of the anatomical environment, considering the limitations of data acquisition in terms of quality and quantity, as well as the absence of anatomical markers. The next topic that the thesis addresses is the dynamic planning of actions. Different application paradigms have been studied, such as direct human-robot interaction using haptic guidance, movement planning in pseudo-structured environments and, active planning and control in dynamic environments. These proposed environments respond to different surgical scenarios within minimally invasive techniques.Finally, cognitive control applied to robotic platforms is addressed. The followed approach is based on the multi-level decomposition of complex tasks (e.g. surgical procedure) defining all potential states and transitions. This decomposition translates into the use of deterministic and robust control structures that restrict falling into uncontrollable or unexpected situations that put at risk, in the application case, the patient, the surgeons or the auxiliary personnel.Control structures also consider human-robot interaction, robots coordination and cooperation, interaction with the work environment and restrictions imposed by surgery and patient safety.The integration of all these modules: perception, planning and cognitive control, demonstrates the advances achieved in cognitive robotics and their applicability towards a more autonomous robotic surgery.

Reading date: 10/05/2024

  • BENINCA, LETIANE: Multi-objective optimization for social multifamily housing: Minimizing heating and cooling demand
    Author: BENINCA, LETIANE
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ARCHITECTURAL, BUILDING CONSTRUCTION AND URBANISM TECHNOLOGY
    Department: Department of Architectural Technology (TA)
    Mode: Change of supervisor
    Deposit date: 11/04/2024
    Reading date: 10/05/2024
    Reading time: 13:00
    Reading place: Presencial Sala de Graus ETSAB. Planta Baixa + videoconferència:meet.google.com/cpp-awed-vth
    Thesis director: CRESPO SÁNCHEZ, EVA | PASSUELLO, ANA CAROLINA
    Committee:
         PRESIDENT: DE MOURA FERREIRA DANILEVICZ, ANGELA
         SECRETARI: KAMPOUROPOULOS, KONSTANTINOS
         VOCAL: CÓSTOLA, DANIEL
    Thesis abstract: The field of architecture and engineering is currently experiencing significant changes due to advances in technology and the growing role of Artificial Intelligence. This shift is largely driven by the growing urgency of promoting more efficient buildings, especially considering its substantial impact on global greenhouse gas emissions and energy usage. Consequently, it is becoming important to focus on practical design choices and utilize effective strategies to enhance energy efficiency and overall building performance. This thesis presents a comprehensive approach to optimize the shape, solar orientation, and envelope configuration of social residential buildings in a humid subtropical climate (Koppen classification: Cfa) in the southern region of Brazil. The main objective is to simultaneously minimize both heating and cooling demands, and present optimal performance design and parameter ranges to improve efficiency energy in multifamily buildings. To achieve this, the study utilizes multi-objective optimization techniques with the support of a non-dominated sorting genetic algorithm (NSGA-II). The simulations are conducted using the EnergyPlus while the optimization process is implemented through Python programming. This extensive computational effort involves a total of 480,000 simulations. The results of the optimization process demonstrate that by carefully selecting the optimal solar orientation, significant reductions in energy demand can be achieved. For instance, optimizing the solar orientation alone can lead to energy demand reductions of up to 5% for linear buildings and 11% for H buildings, when linked to the surroundings. Furthermore, when the envelope is properly addressed the energy demand between shapes achieves almost the same value. Moreover, the optimization of the building envelope configuration further enhances energy efficiency, resulting in remarkable reductions in total energy demand. In particular, linear buildings can achieve up to 60% reduction in energy demand, while H buildings reach up to 63% reduction. These findings highlight the potential benefits of considering solar orientation, surrounding shadows, and envelope design simultaneously during the early design stages of a project. The proposed three-phase optimization framework evaluates different parameter alternatives and presents a pratical guidelines to make informed decisions about the most energy-efficient configurations.
  • GORDON POZUELO, SANDRA: Mechanical integrity of coated PcBN systems: Mechanics and mechanisms involved under service-like conditions
    Author: GORDON POZUELO, SANDRA
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN MATERIALS SCIENCE AND ENGINEERING
    Department: (CEM)
    Mode: Article-based thesis
    Deposit date: 19/02/2024
    Reading date: 10/05/2024
    Reading time: 11:00
    Reading place: EEBE (Escola d'Enginyeria Barcelona Est), Aula A2.14, planta 2, Campus Diagonal-Besòs
    Thesis director: LLANES PITARCH, LUIS MIGUEL | ROA ROVIRA, JOAN JOSEP
    Committee:
         PRESIDENT: MARI, DANIELE
         SECRETARI: FARGAS RIBAS, GEMMA
         VOCAL: BOTERO VEGA, CARLOS ALBERTO
    Thesis abstract: Polycrystalline cubic boron nitride (PcBN) is a composite competitive cutting tool material that excels performance when machining difficult-to-cut materials (e.g. hardened steels, superalloys, etc) due to its exceptional mechanical properties. In practice, PcBNs are coated with a ceramic film to prevent and prolong the onset of tribo-oxidation and abrasive wear. Although there is not a unique consolidated opinion regarding the benefits of coatings in PcBN, most of the bibliography agrees on their use when involving hard turning operations. Most of the research address the tool performance and wear mechanisms, whereas information involving materials science aspects of PcBN and coated PcBN tools, on the basis of understanding microstructure ¿ mechanical properties correlations, is quite limited. In this regard, this thesis focusses on studying hardness, fracture toughness and wear resistance as they are key mechanical properties controlling the mechanical integrity and reliability of the tool, which are related with the contact response, fracture resistance (e.g. premature chipping) and effective tool life, respectively. Four distinct substrates of the coated PcBN grades are studied and first characterized, including the development of characterization and testing protocols. In doing so, focus ion beam tomography and three-dimension (3D) image reconstruction was implemented to study the bulk microstructural characteristics of a PcBN grade with high cBN content and metallic binder. It was found to be a powerful and useful method to gain in-depth knowledge and understanding the microstructural characteristics of PcBN composite materials, additionally to those gathered by conventionally 2D method. The study then focuses on the assessment of the micromechanical properties of PcBN composite materials, as they are known to be key for optimizing their performance through microstructural design. High-speed nanoindentation is successfully implemented to characterize and correlate microstructure with local mechanical properties of such hard and stiff composite materials; where two different methodologies, 1D and 2D Gaussian, are used for statistically deconvoluting the data. It is found that the harder PcBN grade is clearly related with the high cBN content. A scaled-up method was employed to evaluate the contact response of uncoated PcBN grades. The higher cBN content and metallic binder grade, exhibits higher resistance to crack nucleation and a more gradual transition through different damage scenarios due to the concomitant increase of hardness and fracture toughness of this grade. Regarding fracture toughening mechanisms, crack path changes from propagation across the ceramic binder to transgranular fracture through cBN particles, as the cBN content increases. Very interesting, fracture toughness is enhanced by crack interaction with intrinsic sub-grained or twin boundaries within the individual cBN particles as well as by crack deviation through nano cBN particles dispersed in the binder. Afterwards, research was aimed to characterize coated PcBN (with different chemical nature and bias voltage), mainly in terms of coating adhesion strength and mechanical integrity of bulk coated systems as a function of the PcBN substrate microstructural assemblage. Mechanical response of the coated system, assessed by using Rockwell C indentation technique and scratch testing, is strongly dependent on the underneath substrate microstructural assemblage; and therefore, its different intrinsic hardness-toughness correlation. Finally, TiAlN-coated PcBN inserts were used to mill a hardened cold work tool steel. It was proposed as an exploratory study of milling performance of coated PcBN systems to assess the onset of coating failure without involving the emergence of other wear phenomena (e.g. thermally-driven ones).

More thesis authorized for defense

The Doctoral School today

  • 45PhD programs
  • 2131doctoral students 21/22
  • 1591thesis supervisors 21/22
  • 305read theses 2021
  • 982021 thesis with I.M. and/or I.D.
  • 233 I.D. projects (29% from G.C. total)

I.M: International Mention, I.D.: Industrial Doctorate, G.C.: Generalitat de Catalunya