Theses authorised for defence

DOCTORAL DEGREE IN ARCHITECTURAL DESIGN

  • PRAT ORTELLS, JAUME: Espai núvol: una anàlisi de l¿arquitectura de RCR arquitectes a través de les seves atmosferes.
    Author: PRAT ORTELLS, JAUME
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ARCHITECTURAL DESIGN
    Department: Department of Architectural Design (PA)
    Mode: Normal
    Deposit date: 07/02/2024
    Reading date: 19/04/2024
    Reading time: 11:00
    Reading place: Presencial Sala de Graus ETSAB. Planta Baixa
    Thesis director: COLL LOPEZ, JAIME | MASIP BOSCH, ENRIC
    Committee:
         PRESIDENT: BATLLE DURANY, ENRIC
         SECRETARI: CALLÍS FREIXAS, EDUARD
         VOCAL: LACASTA CODORNIU, MIGUEL
         VOCAL: BAILO ESTEVE, MANUEL
         VOCAL: PRIETO GONZÁLEZ, NURIA
    Thesis abstract: The work of RCR arquitectes is recognizable and recognized, based on intense interventions almost always represented from the inside out, deep, somber, which often incorporate this outside, this environment, in their expression: works, therefore, woven through their relationships with this environment, with the inhabitants, works that define deep spaces, gradations through architectural elements converted into filter systems; more an environment, a scene, an atmosphere, than an object. This atmospheric consideration is the basis of the understanding of the work of this study proposed by this thesis, and it does so through a journey through three scales of relationship between the work of architecture and its environment -with the atmosphere they generate- through a project associated with each of these stairs: The Entremurs House by the relationship scale of the person, the Espai La Lira for the city, the Pavelló del Baño -the smallest- for the territory. The analysis of the projects -carried out through a consultation of the original documentation deposited in the studio archives, much of it unpublished-, their relationship both with their own architecture and with many others, and an interpretation of each of these projects -all accompanied by a revisit of each of them- will allow us to introduce ourselves to the logic of the work of RCR arquitectes until we can question ourselves about a possible definition of the spaces proposed by this Study in this atmospheric key.

DOCTORAL DEGREE IN ARCHITECTURAL, BUILDING CONSTRUCTION AND URBANISM TECHNOLOGY

  • NARVÁEZ MONTOYA, JOFFRE SANTIAGO: Desarrollo de técnicas acústicas como ensayo no destructivo para evaluar la adherencia de distintos revestimientos arquitectónicos alicatados a su soporte: casos de aplicación.
    Author: NARVÁEZ MONTOYA, JOFFRE SANTIAGO
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ARCHITECTURAL, BUILDING CONSTRUCTION AND URBANISM TECHNOLOGY
    Department: Department of Architectural Technology (TA)
    Mode: Normal
    Deposit date: 25/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: ZAMORA MESTRE, JOAN LLUIS
    Committee:
         PRESIDENT NO PRESENCIAL: DELGADO MENDEZ, LUIS
         SECRETARI: DIAZ GOMEZ, CESAR
         VOCAL NO PRESENCIAL: CARDENAS HARO, XAVIER RICARDO
    Thesis abstract: The present research is aimed at deepening the evaluation of adhesion in architectural tile coverings in the building sector; despite the improvement of new cementitious adhesives and new ceramic tiles, detachment failures still occur in tile coverings, which can be due to external forces (shocks, earthquakes, vibrations, etc.), inadequate prescription of the cementitious adhesive, incorrect installation, or lack of preparation of the substrate. How to recognize in an inspection the defective state of adhesion of a tiling of this type, in order to prevent detachment?At present, this adhesion is usually evaluated in the laboratory by means of destructive horizontal surface tensile testing systems described in the current regulations on cementitious adhesives. No non-destructive systems have been described for use on site in any layout. The objective of this research is to develop a non-destructive procedure for the evaluation of the state of adhesion of an architectural tiling that is of practical use at the construction site. Several existing alternative techniques, such as thermography or ultrasound, have been considered in the research, but finally it has been decided to focus on the analysis of the acoustic signal obtained by standardized percussion of a tiled tiling on site. This percussion technique has its antecedents in the traditional practice of the experienced architect who manually percussed the tiling with the knuckles of his hand and who, based on his experience, established the lack of adhesion as a defect associated with a "hollow and more vibrant" sound, compared to that of well-bonded tiles. Digital percussion recording analysis is a technique that is already being developed in the field of mechanics to assess the condition of fasteners.The methodology developed in this research is based on successive experimental campaigns in which the PhD student architect has been able to participate, evolving from the understanding of the different vibration phenomena of a free-standing tile depending on the support bonds, through the evaluation of the main vibration frequency of a percussive tiling to the analysis of the correlation between various proposed parameters related to energy, time and their frequency with respect to the values reached in standardized pull-off tests, before and after accelerated aging processes.It is concluded that the results achieved are very promising, although further work is needed to focus on how the acoustic signal emitted by the percussion is modified when it passes through not only the tile and the cementitious adhesive that binds it to the substrate, but especially when it passes through the contact interface between the two.
  • RAKHSH MAHPOUR, ALI: Suitability of new lime nonwoven layered flax fiber composite as a reinforcement masonry historical structures system: Microstructural, mechanical, durability and sustainability assessment
    Author: RAKHSH MAHPOUR, ALI
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ARCHITECTURAL, BUILDING CONSTRUCTION AND URBANISM TECHNOLOGY
    Department: Department of Architectural Technology (TA)
    Mode: Article-based thesis
    Deposit date: 27/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: CLARAMUNT BLANES, JOSE | ROSELL AMIGÓ, JUAN RAMON
    Committee:
         PRESIDENT: DE ANDRADE SILVA, FLAVIO
         SECRETARI: CORNADÓ BARDÓN, CÒSSIMA
         VOCAL: SANZ ARAUZ, DAVID
    Thesis abstract: This thesis investigates the feasibility and potential applications of flax fiber-reinforced lime mortars in masonry construction, particularly focusing on the seismic retrofitting of Unreinforced Masonry (URM) buildings. The composite material, featuring a non-woven structure of flax fiber layers within the lime mortar matrix, undergoes a comprehensive examination with a specific emphasis on mechanical properties, durability, and consistency. Structured as a collection of articles, the thesis covers various dimensions to provide a holistic understanding of the material's capabilities and applications. The first article delves into the mechanical characterization of Flax Fiber Reinforced Lime Mortars. This involves a rigorous assessment of properties such as tensile strength, compressive strength, flexural strength, and toughness. These mechanical attributes are crucial for determining the material's structural integrity and its potential effectiveness in retrofitting applications.In addition to mechanical properties, the thesis explores the durability of flax fiber-reinforced lime mortars. Durability tests are designed to simulate long-term exposure to environmental conditions, including moisture, temperature changes, and other potential stressors. Evaluating the material's resistance to these factors is essential for ensuring its performance and longevity in real-world applications. An integral part of the research involves investigating the optimal configuration of flax fiber layers within the lime mortar. This aspect aims to optimize the composite's flexibility, crack resistance, and chemical compatibility with historic masonry materials. The layered composition is a critical consideration for achieving the desired structural enhancements while maintaining the material's compatibility with historical structures. Furthermore, the thesis contributes to the understanding of the adhesion between flax fiber-reinforced lime mortars and masonry materials. The adhesion characteristics play a pivotal role in determining the effectiveness of the material as a retrofitting solution for URM buildings. The study aims to provide valuable insights into the mechanical properties, durability, and adhesion to ensure a comprehensive understanding of the material's suitability for historical masonry structures.In conclusion, this research, encapsulated in a series of articles, offers a thorough exploration of flax fiber-reinforced lime mortars for masonry construction. The emphasis on mechanical properties, durability, and adhesion positions the material as a potential innovative solution for retrofitting URM buildings. This not only aligns with sustainability goals but also ensures the preservation of cultural heritage. Looking forward, the thesis provides a foundation for further research, suggesting avenues such as numerical modeling and additive manufacturing for a more nuanced understanding and practical application of the developed materials in the construction industry.

DOCTORAL DEGREE IN ARCHITECTURAL, CIVIL AND URBAN HERITAGE AND REFURBISHMENT OF EXISTING BUILDINGS

  • ZHANG, ZHIHUI: Linking architecture and emotions: sensory dynamics and methodological innovations
    Author: ZHANG, ZHIHUI
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ARCHITECTURAL, CIVIL AND URBAN HERITAGE AND REFURBISHMENT OF EXISTING BUILDINGS
    Department: (RA)
    Mode: Article-based thesis
    Deposit date: 25/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: FORT MIR, JOSEP MARIA | GIMÉNEZ MATEU, LUIS
    Committee:
         PRESIDENT: FONSECA ESCUDERO, DAVID
         SECRETARI: NAVARRO DELGADO, ISIDRO
         VOCAL: VENTURA RODÀ, ORIOL
    Thesis abstract: This study delves deeply into the complex relationship between the field of architecture and human emotions, aiming to fill a significant gap in existing research. It extensively explores the profound impact of architectural design elements, such as lighting, colour schemes, and the integration of natural landscapes, on emotional responses. This research goes beyond traditional focuses on aesthetics and sustainability, striving to innovate methods for assessing the emotional impact of architectural spaces.In this study, we adopted a technological pathway from the laboratory to virtual reality, and finally to AI, combining theoretical analysis with practical experiments and case studies. The main research includes examining the effects of lighting and spatial dimension variations on people's emotions, as well as the application of facial emotion recognition technology in virtual reality architectural environments, exploring AI's perceptual capabilities as a tool in architectural design. These studies aim to narrow the gap between theoretical research and practical application, providing new perspectives and empirical data for the field of architectural design.The study concludes with a reflection on the methodologies used and their broader implications for architectural design practice. It offers specific strategies for architects and designers, aimed at creating spaces that resonate emotionally and add substantial value to human experiences. By prioritizing emotional factors in the design process, this research seeks to enhance overall quality of life and promote well-being in thoughtfully designed architectural spaces.

DOCTORAL DEGREE IN AUTOMATIC CONTROL, ROBOTICS AND VISION

  • MARTÍ SAUMELL, JOSEP: Agile aerial manipulation: an approach based on full-body dynamics and model predictive control
    Author: MARTÍ SAUMELL, JOSEP
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN AUTOMATIC CONTROL, ROBOTICS AND VISION
    Department: Institute of Robotics and Industrial Informatics (IRI)
    Mode: Normal
    Deposit date: 26/03/2024
    Reading date: 30/04/2024
    Reading time: 11:00
    Reading place: Sala de Juntes de la Facultat Matemàtiques i Estadística (FME) de la UPC, C/Pau Gargallo, 14, 08028 Barcelona
    Thesis director: SANTAMARIA NAVARRO, ANGEL | SOLÀ ORTEGA, JOAN
    Committee:
         PRESIDENT: MANSARD, NICOLAS
         SECRETARI: MORCEGO SEIX, BERNARDO
         VOCAL: LIPPIELLO, VINCENZO
    Thesis abstract: Aerial manipulators, which commonly take the form of multirotors with attached robotic limbs, primarily employ their limbs for pure manipulation tasks and do not rely on them during aerial locomotion. Besides, their movement tends to be slow. This thesis aims to enhance an aerial manipulator¿s agility by harnessing its limb¿s capabilities to augment its overall motion. This objective involves investigating various modes of utilizing the limb: as a tail for aerial locomotion, as an arm for aerial manipulation, or as a leg for hybrid aerial-contact locomotion. The present thesis contributes to two specific domains: 1. Generation and control of agile motions for aerial manipulators, 2. Design and construction of a specialized aerial manipulator for executing agile motions.Generating agile motions requires predicting the movement of the robot considering its dynamics so that these dynamics can be used to favor the robot¿s motion. Hence, we can achieve complex maneuvers with relative ease. Optimal control is a trajectory-generation technique that meets these requirements, and that is central to this thesis. We encode the robot¿s tasks as cost functions of the optimal control problem (OCP) and use the whole-body dynamics as the constraints of the dynamic system. On the control side, to deploy such trajectories in a real robot, we use model predictive control (MPC) techniques, which is the closed-loop control extension of optimal control. To get the control command, an MPC controller solves the OCP in which we have encoded the agile trajectory, and then the controller applies the first command of the solution control trajectory. Thus, MPC requires solving an OCP at the control rate, i.e., within a few milliseconds. This forces us to use fast, specialized solvers based on the dynamic programming principle, such as differential dynamic programming (DDP). In their original form, these solvers cannot consider the control bounds. These bounds are important to create trajectories compatible with the real robot. To tackle this problem, in this thesis, we propose two DDP-based methods to consider the control bounds: one is based on a squashing function, and the other is based on a projection method. Even with these solvers, we face challenges in meeting the solving rate and are forced to reduce the MPC horizon. Reducing the MPC horizon implies that the MPC can only see a portion of the original OCP, possibly leaving out some of the tasks. This affects the predictive capability of the controller and compromises the accomplishment of the tasks, especially those that require an elaborate and dynamic maneuver. To overcome this difficulty, in this thesis, we propose to update, at each MPC iteration, the terminal cost function in the MPC with a function that encodes the part of the trajectory that remains unseen by the controller.Regarding robot design, deploying agile motions becomes difficult with existing aerial manipulators, which are generally big-size multirotor platforms with non-compliant, high-gear ratio limbs. In this thesis, we present Borinot, an open-source aerial robotic platform designed to research hybrid agile locomotion and manipulation using flight and contacts. This platform features an agile and powerful hexarotor that can be outfitted with torque-actuated limbs of diverse architecture, allowing for whole-body dynamic control. We present experiments with this robot showcasing different agile motions.In addition to the stated contributions, this thesis contributes in other areas required to operate the robot, such as a procedure for identifying the dynamical parameters based on factor-graph estimation or a hardware enhancement that allows for direct thrust control of Borinot¿s rotors.
  • ORTI NAVARRO, JOAN: The Surface Defect Identification Problem in The Industry: A Novel Approach with Semantic Segmentation and Generative Adversarial Networks
    Author: ORTI NAVARRO, JOAN
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN AUTOMATIC CONTROL, ROBOTICS AND VISION
    Department: Department of Automatic Control (ESAII)
    Mode: Normal
    Deposit date: 18/03/2024
    Reading date: 10/05/2024
    Reading time: 11:00
    Reading place: Sala Actes de la Facultat de Matemàtiques i Estadística (FME), Campus Diagonal Sud, Carrer de Pau Gargallo, 14, 08028 Barcelona
    Thesis director: MORENO NOGUER, FRANCESC D'ASSIS | PUIG CAYUELA, VICENÇ
    Committee:
         PRESIDENT: SERRATOSA CASANELLES, FRANCESC ASSIS
         SECRETARI: GRAU SALDES, ANTONI
         VOCAL: VENTURA ROYO, CARLES
    Thesis abstract: Surface inspection of coated surfaces in the automotive industry, traditionally has been a manual process in charge of keen eye operators in charge of inspecting the whole car body. However, as might be deducted, manual inspections often lack repetitiveness and reliability, very much desired in a such a strict sector. Computer vision tackled this problem with the first automated defect detection systems, pinpointing the defects in the car body and their size. Nevertheless, as these systems are constrained to just detection, the operator is still in charge of properly labelling the defects to rework them correctly. Additionally, there is a lack of traceability between the process and the defects themselves, taking longer to identify the root causes of faulty paint shop facilities.In this thesis, we address the multidisciplinary problem of defect identification in specular surfaces, with two main research lines. In the first one, we developed a novel illumination approach based on indirect diffuse lighting, in contrast with the conventional specular reflection. Together with a high resolution camera, we demonstrated an important improvement in terms of defect recognition with respect to the existing defect detection systems. These results are assessed with specialized auditors from the SEAT Martorell factory.The second research line, oriented to computer vision, explore the possibilities of implementing a deep learning solution for industrial defect identification. We developed a fast and reliable context aggregation model, featuring dilated convolutions and residual connections between opposite layers. This model is then trained following a loss leverage between classification and segmentation, for a smoother training procedure. Additionally, in order to cope the frequent class imbalances in the industrial datasets, we developed a guided-crop image augmentation strategy, based on cropping real defect randomly into non-defective images to generate synthetic new samples. The results state that the combination of this model with this augmentation strategy is able to outperform well-known segmentation models.Eventually, for data scarcity situations, we resorted to image synthesis methods to generate new fake samples. Models like Pix2pix have proven to be able to generate close to real im- ages, helping the segmentation model to converge faster than with the previous guided-crop image augmentation technique. Later, this generative method will be surpassed by a more sophisticated one, which features spatially-adaptive normalization layers that help to synthe- size images even without an encoder. Overall, it demonstrated good capabilities in multiple industrial datasets.

DOCTORAL DEGREE IN BIOMEDICAL ENGINEERING

  • FERNÁNDEZ BOSMAN, DAVID: PyMCGPU-IR: a new tool for patient dose monitoring in interventional radiology procedures
    Author: FERNÁNDEZ BOSMAN, DAVID
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN BIOMEDICAL ENGINEERING
    Department: Institute of Energy Technologies (INTE)
    Mode: Normal
    Deposit date: 27/02/2024
    Reading date: 24/04/2024
    Reading time: 11:30
    Reading place: Aula Capella, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Av. Diagonal, 647. 08028 Barcelona
    Thesis director: GINJAUME EGIDO, MERCE | DUCH GUILLEN, MARIA AMOR
    Committee:
         PRESIDENT: SANS MERCE, MARTA
         SECRETARI: SEMPAU ROMA, JOSEP
         VOCAL: SÁNCHEZ CASANUEVA, ROBERTO MARIANO
    Thesis abstract: Interventional radiology procedures are associated with potentially high radiation doses to the skin. The 2013/59/EURATOM Directive establishes that the equipment used for interventional radiology must have a device or a feature informing the practitioner of relevant parameters for assessing patient dose at the end of the procedure. Monte Carlo codes of radiation transport are considered to be one of the most reliable tools available to assess doses. However, they are usually too time consuming for use in clinical practice. This thesis has been developed at the Institute of Energy Technologies of the Universitat Politècnica de Catalunya within the framework of the European project "Implications of Medical Low Dose Radiation Exposure" (MEDIRAD). The main objective of this work is to develop a software tool based on the Monte Carlo program MC-GPU for assessing the skin dose in patients undergoing interventional radiology (IR) procedures. The achievement of this objective can be divided into two main blocks: the validation of MC-GPU and the development and validation of PyMCGPUIR, a skin dose calculation tool for IR procedures based on MC-GPU. For the validation of MC-GPU, simulations were conducted and compared with the well-validated code PENELOPE/penEasy and then compared against thermoluminescent measurements performed on slab phantoms, both in a calibration laboratory and at a hospital. MC-GPU demonstrated excellent agreement in organ dose distribution, with differences below 1%, despite reducing the calculation time by a factor of 2500. Comparisons with thermoluminescent measurements indicated agreements within 10%, validating MC-GPU¿s ability to provide accurate dose estimates in real clinical setups in very short times. In this work we have also developed PyMCGPU-IR, a new software tool based on the Monte Carlo program MC-GPU for assessing skin dose and organ doses in patients undergoing an interventional radiology (IR) procedure. PyMCGPU-IR has been validated through skin and organ dose measurements in an anthropomorphicphantom and showed differences below 6% in skin dose measurements and mostly below 20% in organ doses in clinical procedures. PyMCGPU-IR offers both, high performance and accuracy for dose assessment when compared with skin and organ dose measurements. It also allows the calculation of dose values at specific positions and organs, the dose distribution and the location of the maximum dose per organ. In addition, PyMCGPU-IR overcomes the time limitations of CPU-based MC codes.In this thesis we have shown that PyMCGPU-IR is an innovative Skin Dose Calculation (SDC) tool that offers higher performance and accuracy for skin dose calculations compared to most available SDCs. Currently, PyMCGPU-IR provides dose values only after the procedure has finished. In the future, PyMCGPU-IR could be adapted to provide real-time dose calculation if real-time radiation source information is available.

DOCTORAL DEGREE IN BUSINESS ADMINISTRATION AND MANAGEMENT

  • HINOJOSA I RECASENS, JOSEP DOMINGO: Investigación sobre la persistencia, el cambio y la materialidad de la identidad organizacional: entrevistas a expertos y el caso de una empresa centenaria
    Author: HINOJOSA I RECASENS, JOSEP DOMINGO
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN BUSINESS ADMINISTRATION AND MANAGEMENT
    Department: Department of Management (OE)
    Mode: Normal
    Deposit date: 05/03/2024
    Reading date: 30/05/2024
    Reading time: 11:30
    Reading place: Lectura públicaa l' Aula 28.8 de l'Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB)- UPC
    Thesis director: SUNYER TORRENTS, ALBERT
    Committee:
         PRESIDENT: GARCÍA ÁLVAREZ, MARIA ERCILIA
         SECRETARI: PONS PEREGORT, OLGA
         VOCAL: SELVA OLID, CLARA
    Thesis abstract: ContextThis thesis investigates organizational identity, its persistence and change, and the relationship between identity and material objects. Organizational identity is what the members of an organization answer when they ask themselves: Who are we? and what do we do as an organization?. As a field of research, organizational identity has been gaining relevance in recent decades, especially since the authors Albert and Whetten (1985) established the academic foundations to characterize this concept through the attributes that identity must have: centrality, endurance and differentiation. This characterization was generally accepted by the scientific community and was not questioned for years; it is still considered relevant today. Organizational identity is a broad and complex topic that has been explored by various researchers using qualitative methods. Identity can evolve as organizational practices and narratives are reinterpreted. Some authors consider that identity is dynamic and that it can change as the organization evolves. In this thesis we develop an exploratory research on organizational identity, paying special attention to how identity can adapt, change and be instantiated by material objects. Specifically, this thesis has been structured based on two lines of research: The first line of research studies the persistence of organizational identity and its changes over time, the second line explores the possible relationships between the organizational identity and material artifacts.JustificationThere remains an interesting path to follow in research on organizational identity. Currently, organizational identity is part of the strategic debates and communication plans of many organizations, highlighting the relevance of this concept that can be considered the DNA of an organization. The purpose of this research is to deepen the understanding of organizational identity by exploring how it evolves when the environment changes, when new strategies or different events occur in which identity may face internal or external tensions. Finally, a single in-depth case study is developed exploring the relationships between the identity of an organization and some of its material artifacts.ContributionsThis study has shown that physical objects are part of an identity system that, including other intangible elements, such as verbal communication and narratives, support, instantiate and communicate organizational identity over time. This research results extend the literature on identity, and on the influence and use of material identity objects. The in-depth case study has shown that physical objects has been used to support, instantiate and communicate organizational identity. The data induction process has characterized three different categories of physical objects that provide identity meanings: primal artifacts, identity markers and artifacts created ad hoc.LimitationsThis work provides an exciting opportunity for future research to extend these findings by examining the persistence, change, and materiality of identity in other organizational contexts and industries.

DOCTORAL DEGREE IN CHEMICAL PROCESS ENGINEERING

  • NASR ESFAHANI, KOUROSH: Mathematical modeling of advanced oxidation processes for the efficient wastewater treatment: Integrated Management of advanced oxidation processes and conventional Bio-Processes for the removal of recalcitrant components
    Author: NASR ESFAHANI, KOUROSH
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN CHEMICAL PROCESS ENGINEERING
    Department: Department of Chemical Engineering (EQ)
    Mode: Normal
    Deposit date: 28/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: PEREZ MOYA, MONTSERRAT | GRAELLS SOBRE, MOISES
    Committee:
         PRESIDENT: PAIS VILAR, VÍTOR JORGE
         SECRETARI: SOLER TURU, LLUIS
         VOCAL: GARCIA MONTAÑO, JULIA
    Thesis abstract: The objective of this thesis is to contribute to the development of mathematical modeling of Advanced Oxidation Processes (AOPs) aimed at the competent treatment of recalcitrant organic compounds in wastewater. In particular, the Ph.D. thesis first focuses on developing mathematical models of AOPs, implementing these models in software tools, and enabling a deeper understanding of the complex nature of these processes through the detailed simulation of the evolution of chemical species along the reaction time for diverse and unexplored scenarios. Hence, these tools are next used for fitting the models to the experimental data obtained in the laboratory in the course of the thesis or reported in the literature. The fitted models are analyzed and refined through sensitivity analysis techniques, and finally, they are validated and their accuracy assessed. Models are mainly used for addressing operational issues, but also design aspects are considered in regard of the simulation of integrated processes using AOPs and conventional biotreatment processes.The thesis specifically addresses the development of a model for AOPs, above all photo-Fenton processes, including flexible H2O2 supply given as a function of time. The model contributes a practical tool aimed at providing model-based simulation for solving the problem of the management of the H2O2 dosage profile of the photo-Fenton process.The thesis also addresses the problem of the pH dependency of the photo-Fenton by modeling the possibility of performing the photo-Fenton process at near-neutral pH. This is studied by considering the use of iron complexing agents such as ethylenediamine disuccinic acid (EDDS). In a subsequent stage, as a step forward in improving photo-Fenton processes, a reported kinetic model of the Fe(3+)-EDDS mediated photo-Fenton process is extended to include the reactions occurring in the absence of H2O2, when EDDS(¿ 3- )radical generated from the lysis of the Fe(3+)-EDDS complex is responsible for the organic matter degradation. This is achieved by adopting a novel semi-empirical approach based on lumping radical species.Ozonation of wastewater is also studied as a different case of AOPs, focusing in the modeling of ozone decay during the treatment of secondary effluents containing organic matter. This is addressed by proposing a new model, based again in the used of lumped or surrogate concentrations. The ozone model developed is shown to be capable of describing the complex profile of the ozone at different initial concentrations, and has proved accurate to describe the experimental data obtained in the lab, as well as data reported in the literature.The modeling approach adopted in this thesis has also been used to explore integrated processes combining AOPs with other processes, namely conventional biotreatment processes which main acknowledged limitation is the incapacity to remove recalcitrant compounds from wastewaters. The study combined the AOP models developed with standard models such as ASM1 to map the correspondence between the variables employed in each model, and produce the simulation of different scenarios combining these two technologies.As a final remark, the thesis has also addressed the design and development of chemical reactors, particularly prototypes for photo-Fenton processes using 3D-printing. This last study addresses the selection of materials according to different criteria for reactor prototyping and subsequent testing of the chemical suitability of the reactor for carrying out AOPs.

DOCTORAL DEGREE IN CIVIL ENGINEERING

  • RIVET FERNÁNDEZ, IVÁN: Computational Multiscale Analysis for Additive Manufacturing
    Author: RIVET FERNÁNDEZ, IVÁN
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN CIVIL ENGINEERING
    Department: (DECA)
    Mode: Article-based thesis
    Deposit date: 18/03/2024
    Reading date: 22/04/2024
    Reading time: 11:00
    Reading place: Sala de Seminarios O.C. Zienkiewicz del Centro Internacional de Métodos Numéricos en Ingeniería - CIMNE Campus Nord de la UPC, Edifici C1 - 2a Planta, 08034 Barcelona
    Thesis director: CERVERA RUIZ, LUIS MIGUEL | DIALAMI SHABANKAREH, NARGES
    Committee:
         PRESIDENT: AURICCHIO, FERDINANDO
         SECRETARI: CAICEDO SILVA, MANUEL ALEJANDRO
         VOCAL: DOMINGO-ESPIN, MIQUEL
    Thesis abstract: This thesis aims towards the understanding and optimization of Additive Manufacturing (AM) components through the application of accurate computational multiscale simulations. The research is guided by three primary objectives: (1) the development of a multiscale orthotropic material model tailored for Fused Filament Fabrication (FFF) components, (2) the formulation of an optimization strategy to enhance the mechanical performance of FFF parts, and (3) the comprehensive characterization and modeling of their failure mechanisms.To address the first objective, a printing pattern-based orthotropic material model in the framework of multiscale analysis is constructed. This model accounts for the intricate interactions occurring at both filament and component scales in FFF, offering a nuanced representation of the material's behavior. By bridging these scales, the model ensures a comprehensive understanding of the mechanical response of FFF parts, enabling accurate predictions of their performance and failure modes.The second objective focuses on the optimization of the mechanical performance of FFF components. Leveraging the developed multiscale material model, an optimization strategy based on a novel statistics-based algorithm and an orthotropic failure criterion is formulated. The computational domain generation strategy is also tackled, analyzing different approaches and taking advantage of an Adaptive Mesh Refinement (AMR) technique to reduce the computational cost of the simulations. The developed methodology is fully embedded into the AM workflow.The final objective involves the characterization and modeling of the different failure mechanisms present in FFF parts. The different failure modes exhibited by FFF components are identified for each printing pattern present in the component, and a Mechanism-Based (MB) damage criterion is developed to model their stiffness degradation. In addition, an MB cracking model that accounts for the orthotropic brittleness of FFF parts is presented and validated against experimental tests.The central motivation driving this thesis is to alleviate the dependency on costly experimental procedures for characterizing and/or predicting the mechanical behavior of FFF components by performing high-precision and inexpensive multiscale simulations. The outcomes of this study aim to improve the current Design for Additive Manufacturing (DfAM) guidelines.

DOCTORAL DEGREE IN COMPUTER ARCHITECTURE

  • ALBUQUERQUE PORTELLA, FELIPE: A paradigm shift of HPC for geosciences: a novel HPC service model for geosciences applications
    Author: ALBUQUERQUE PORTELLA, FELIPE
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN COMPUTER ARCHITECTURE
    Department: (DAC)
    Mode: Normal
    Deposit date: 25/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: BERRAL GARCÍA, JOSEP LLUÍS | CARRERA PÉREZ, DAVID
    Committee:
         PRESIDENT: FONTOURA DE GUSMAO CERQUEIRA, RENATO
         SECRETARI: TOUS LIESA, RUBÉN
         VOCAL: DE MORAES, RAFAEL JESUS
    Thesis abstract: The Oil and Gas (O&G) industry ranks prominently among the leading commercial users of powerful supercomputers worldwide, as indicated by global High-Performance Computing (HPC) ranking lists, such as TOP500 and Green500. Geoscience applications, particularly flow and geomechanical simulators, pose demanding workloads for HPC in adressing complex engineering challenges in the O&G industry, together with seismic processing. The rise of hybrid on-demand and cloud HPC environments presents new challenges to end users. Beyond expertise in their fields, users must navigate the intricacies of computer architecture to select the optimal hardware and parallelization option. They also need to consider the business model decisions of the cloud providers, such as managing spot instances, selecting different cloud regions, or even different cloud providers.Furthermore, users struggle with the complexities of configuring their own geoscience software due to the multitude of tunable numerical parameters. Default values may not be optimal for specific reservoir models, requiring geoscientists¿ expertise in both the physics and mathematics behind the simulators and in computer science. A deep understanding of application performance is challenging, as it can vary based on input parameters. Many users end up relying on default configurations or decisions by system administrators for geoscience software, missing opportunities to optimize speed and cost-effectiveness.This thesis aims to shift the paradigm in utilizing HPC for geoscience by entrusting computer architecture decisions to domain-aware optimization algorithms. Such an approach not only enhances usability for the end user, but can also translate into substantial reductions in both time and cost. These algorithms could lead to better utilization of on-premises supercomputers and cost optimization of cloud resources. We evaluate the feasibility of this approach through the contributions of three algorithms. The first algorithm of this work was named TunaOil, which is a novel methodology that uses previous reservoir simulation executions to train an oracle that proposes near-optimal numerical parameters for subsequent simulations within a History Matching (HM) workflow. This allows the simulation parameters to be adjusted without additional executions, saving valuable time. Experiments show that the contribution of this algorithm is an improvement of up to 31% in the overall runtime of the HM workflow.The second algorithm, named MScheduler, is a metascheduler framework designed for reservoir simulations in the cloud. It effi-ciently executes SLURM jobs by utilizing spot Virtual Machines (VMs) to minimize costs and ensure job completion even in the event of VM termination. Key contributions include a novel methodology for reservoir simulation checkpointing, a cost-based scheduler, and an analysis of the strategy using real production jobs. MScheduler significantly reduces financial costs with a slight increase in makespan. On average, it reduces monetary costs by up to 32%, with only an 8% increase in the makespan compared on-demand executions. In the best case, the monetary savings reach 66%, with a 19% increase in makespan.The third algorithm utilizes Machine Learning (ML) algorithms in job schedulers to predict execution times of reservoir job, improving cluster resource efficiency. The developed model classifies the duration time interval of SLURM reservoir simulation jobs with an accuracy of more than 70%, exceeding the standard performance described in the job scheduling literature, thus contributing to improved scheduling decisions.Together, these algorithms mark a paradigm shift in HPC utilization for geoscience applications. They liberate end users from complex computer architecture choices, contributing to improved decision-making and significant time and cost benefits.
  • MATSUMURA, KAZUAKI: Advancing the state of the art of directive-based programming for GPUs: runtime and compilation
    Author: MATSUMURA, KAZUAKI
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN COMPUTER ARCHITECTURE
    Department: (DAC)
    Mode: Normal
    Deposit date: 20/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: PEÑA MONFERRER, ANTONIO JOSE
    Committee:
         PRESIDENT: CASTELLÓ GIMENO, ADRIÁN
         SECRETARI: AYGUADÉ PARRA, EDUARD
         VOCAL: EL HAJJ, IZZAT
    Thesis abstract: The rapid development in computing technology has paved the way for directive-based programming models towards a principal role in maintaining software portability of performance-critical applications. Efforts on such models involve a least engineering cost for enabling computational acceleration on multiple architectures, while programmers are only required to add meta information upon sequential code. Optimizations for obtaining the best possible efficiency, however, are often challenging. The insertions of directives by the programmer can lead to side-effects that limit the available compiler optimization possible, which could result in performance degradation. This is exacerbated when targeting asynchronous execution or multi-GPU systems, as pragmas do not automatically adapt to such mechanisms, and require expensive and time consuming code adjustment by programmers. Moreover, directive-based programming models such as OpenACC and OpenMP often prevent programmers from making additional optimizations to take advantage of the advanced architectural features of GPUs because the actual generated computation is hidden from the application developer.This dissertation explores new possibilities for optimizing directive-based code from both runtime and compilation perspectives. First, we introduce a runtime framework for OpenACC to facilitate dynamic analysis and compilation. Especially, our framework realizes automatic asynchronous execution and multi-GPU use based on the status of kernel execution and data availability while taking advantage of an on-the-fly mechanism for compilation and program optimization. We add a versatile code-translation method for multi-device utilization by which manually-optimized applications can be distributed automatically while keeping original code structure and parallelism. Second, we implement a novel flexible optimization technique that operates by inserting a code emulator phase to the tail-end of the compilation pipeline. Our tool emulates the generated code using symbolic analysis by substituting dynamic information and thus allowing for further low-level code optimizations to be applied. We implement our tool to support both CUDA and OpenACC directives as the frontend of the compilation pipeline, thus enabling low-level GPUoptimizations for OpenACC that were not previously possible. Third, we propose the use of a modern optimization technique, equality saturation, to optimize sequential code utilized in directive-based programming for GPUs. Our approach realizes less computation, less memory access, and high memory throughput simultaneously. Our fully-automated framework constructs single-assignment forms from inputs to be entirely rewritten while keeping dependencies and extracts optimal cases. Overall, we cover runtime techniques and optimization methods based on dynamic information, low-level operations, and user-level opportunities.We evaluate our proposals on the state-of-the-art GPUs and provide detailed analysis for each technique. For multi-GPU use, we show in some cases nearly linear scaling on the part of kernel execution with the NVIDIA V100 GPUs. While adaptively using multi-GPUs, the resulting performance improvements amortize the latency of GPU-to-GPU communications. Regarding low-level optimization, we demonstrate the capabilities of our tool by automating warp-level shuffle instructions that are difficult to use by even advanced GPU programmers. While evaluating our tool with a benchmark suite and complex application code, we provide a detailed study to assess the benefits of shuffle instructions across four generations of GPU architectures. Lastly, with sequential code optimization, we demonstrate a significant performance improvement on several compilers through practical benchmarks.Then, we highlight the advantages of computational reordering and emphasize the significance of memory-access order for modern GPUs.
  • NESTOROV, ANNA MARIA: Optimizing serverless architectures for data-intensive analytics workloads
    Author: NESTOROV, ANNA MARIA
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN COMPUTER ARCHITECTURE
    Department: (DAC)
    Mode: Normal
    Deposit date: 25/03/2024
    Reading date: 03/05/2024
    Reading time: 10:00
    Reading place: Sala C6-E101 - Facultat d'Informàtica de Barcelona (FIB)
    Thesis director: CARRERA PÉREZ, DAVID | BERRAL GARCÍA, JOSEP LLUÍS
    Committee:
         PRESIDENT: SANCHEZ ARTIGAS, MARC
         SECRETARI: GUITART FERNANDEZ, JORDI
         VOCAL: TAHERKORDI, AMIRHOSEIN
    Thesis abstract: Recently, serverless computing has garnered attention from academia and industry due to its on-demand resource provisioning, allowing users to focus solely on their core business logic by breaking down tasks into small stateless functions.Serverless offers benefits like a 'pay-per-use' cost model, greater flexibility, and transparent elastic resource auto-scaling.Researchers in academia and industry are increasingly exploring serverless computing's potential in complex, data-intensive analytics. These tasks, resource-heavy and highly parallel, involve significant inter-function communications. However, this shift presents challenges, requiring alignment with the specific needs and constraints of such applications. This research area is currently considered one of the most compelling areas of study. This thesis shows that it is possible to efficiently execute modern data-intensive analytics workloads, traditionally deployed in managed cloud clusters, within serverless computing environments using direct data inter-function communication and optimized performance-cost efficient resource allocation policies. To demonstrate this thesis, we first build a performance model for serverless workloads, considering data sharing, volume, and communication technologies. The model, with a relative error of 5.52%, evaluates the performance of a representative workload in serverless, analyzing task granularity and concurrency, data locality, resource allocation, and scheduling policies. Our results indicate that the performance of data-intensive analytics workloads in serverless can be up to 4.32x faster depending on how these are deployed. Furthermore, this characterization highlights inefficiencies in centralized object storage and stresses the primary importance of efficient resource use.We then introduce Floki, a data forwarding system that tackles the centralized object storage bottleneck. It enables direct communication between producer-consumer function pairs using fixed-size communication methods. Floki establishes point-to-point data channels for intra- and inter-node data transmission, allowing transparent data transfer and reducing network data copying. This workflow-oriented approach boosts performance and minimize resource requirements without restricting function placement.Our experimental evaluation, performed on the principal communication patterns in distributed systems, shows that Floki reduces the end-to-end time up to 74.95x, decreasing the most extensive data sharing time from 12.55 to 4.33 minutes, saving almost two-thirds of time. Additionally, Floki achieves up to 50,738x of resource-saving, equivalent to a memory allocation of approximately 1.9MB instead of an object storage allocation of 96GB.Finally, we investigates how to achieve efficient resource utilization in modern serverless environments and proposes Dexter, a novel resource allocation manager, leveraging serverless computing elasticity. Dexter continuously monitors application execution, dynamically allocating resources at a fine-grained level combining predictive and reactive strategies to ensure performance-cost efficiency (optimizing total runtime cost). Unlike black-box Machine Learning (ML) models, Dexter reaches a sufficiently good solution, prioritizing simplicity, generality, and ease of understanding. The proposed experimental evaluation demonstrates that our solution achieves a significant cost reduction of up to 4.65x, while improving resource efficiency up to 3.50x, when compared with the default serverless Spark resource allocation that dynamically requests exponentially more executors to accommodate pending tasks. Dexter also enables substantial resource savings, demanding up to 5.71x fewer resources. Dexter is a robust solution to new, unseen workloads, achieving up to 2.72x higher performance-cost efficiency thanks to its conservative resource scaling approach.

DOCTORAL DEGREE IN COMPUTING

  • ALONSO ALONSO, JESUS: Dynamic Terrain Modeling
    Author: ALONSO ALONSO, JESUS
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN COMPUTING
    Department: Department of Computer Science (CS)
    Mode: Normal
    Deposit date: 18/03/2024
    Reading date: 08/05/2024
    Reading time: 12:00
    Reading place: Sala de Teleensenyament del 'ETSETB, edifici B3, Barcelona Diagonal NORD
    Thesis director: JOAN ARINYO, ROBERT
    Committee:
         PRESIDENT: CHOVER, MIGUEL
         SECRETARI: ARGUDO MEDRANO, OSCAR
         VOCAL: BOSCH GELI, CARLES
    Thesis abstract: This work explores terrain modelling techniques that provide a comprehensive experience in terms of graphical representation, physics interaction and dynamic updates in real-time. In particular, our focus revolves around the creation of a system able to: 1) capture any possible feature we find on terrains, 2) maintain an accurate level of detail, 3) offer rendering and navigation in real-time, 4) include the option of performing dynamic updates in real-time, and 5) support physical interactions of entities also in real-time.Once previous models from the literature are reviewed, two models are proposed that take a digital elevation model as the base structure. The former follows a strategy in which we mimic the geotectonic events we find in nature. The latter uses a sculpting approach with convex polyhedra as a carving tool. To this end, several works are presented.While the first option introduces some gains with limits, the second option is a proposal that accomplishes the five required constraints. On the one hand, it can model tunnels, caves and overhangs, and terrain features can be captured with pixel-perfect accuracy. On the other hand, it is not demanding regarding processing and storage requirements and offers scalability. Finally, rendering, physics and dynamic updates can be performed in real-time.As a result, this work represents a significant contribution, offering an integrated solution capable of addressing the most challenging aspects of dynamic terrains. Our approach introduces a novel terrain model comprising diverse data structures and a suite of algorithms designed to capture a wide range of terrain formations accurately. A scene composed of tens of millions of triangles can be continuously updated to the extent of simulating a completely devastated terrain, rendered, and subjected to real-time physics computations involving tens of thousands of physical entities. The proposed model holds great potential for computer graphic applications, particularly in scenarios such as simulators and games, where dynamic landscapes play a paramount role.

DOCTORAL DEGREE IN ELECTRICAL ENGINEERING

  • BAS CALOPA, PAU: Partial discharges in low-pressure atmosphere: an experimental approach to improving electrical protection
    Author: BAS CALOPA, PAU
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ELECTRICAL ENGINEERING
    Department: (DEE)
    Mode: Article-based thesis
    Deposit date: 21/03/2024
    Reading date: 06/05/2024
    Reading time: 11:00
    Reading place: Edifici TR5, sala conferències, ESEIAAT-UPC
    Thesis director: RIBA RUIZ, JORDI ROGER | MORENO EGUILAZ, JUAN MANUEL
    Committee:
         PRESIDENT: MONTAÑA PUIG, JUAN
         SECRETARI: ABOMAILEK RUBIO, BASEL CARLOS
         VOCAL: URRESTY BETANCOURT, JULIO CÉSAR
    Thesis abstract: This thesis contributes to the field of partial discharges in low-pressure environments, aiming to improve electrical wire interconnecting systems (EWIS) protection in aerospace applications. A series of experimental studies have been conducted to evaluate the potential of corona and surface discharges as indicators of electrical insulation degradation. To this end, the influence of variables such as pressure, pressure drop, frequency, and geometry on corona discharge behaviour has been examined. Furthermore, the performance of various sensors, including CMOS image sensors, photoelectric UV sensors, and acoustic cameras, in detecting corona discharges has been investigated and compared. Additionally, by employing RGB image processing techniques, this thesis presents a novel method for the quantification of corona discharges. This method allowed studying the correlation between the light intensity of electrical discharges and the dissipated electrical energy, with a particular focus on how pressure and frequency variation impacts on this relationship. The feasibility of utilizing corona and surface discharges as an indicator for the degradation of wire insulation has also been explored, providing foundational knowledge for the future development of electrical protection tools aimed at predictive maintenance. The findings from this research contribute to the advancement of predictive maintenance strategies, offering potential for early detection of insulation failures, thereby enhancing the safety and reliability of aerospace electrical systems.

DOCTORAL DEGREE IN ELECTRONIC ENGINEERING

  • ARNAIZ MARTÍNEZ, DAVID MARIANO: Bringing Self-Awareness to the Extreme Edge - A Distributed Approach for Adaptive Energy Management in WSNs Applied to Structural Health Monitoring
    Author: ARNAIZ MARTÍNEZ, DAVID MARIANO
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ELECTRONIC ENGINEERING
    Department: Department of Electronic Engineering (EEL)
    Mode: Normal
    Deposit date: 21/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: ALARCON COT, EDUARDO JOSE | MOLL ECHETO, FRANCESC DE BORJA | VILAJOSANA GUILLEN, XAVIER
    Committee:
         PRESIDENT: CHOWDHURY, KAUSHIK ROY
         SECRETARI: ABADAL CAVALLÉ, SERGI
         VOCAL: DINI, PAOLO
    Thesis abstract: In today's landscape, data are increasingly becoming an invaluable resource to enhance decision-making, enable predictive insights, improving operational efficiency, among numerous other applications. Within the current data-centric mindset, wireless sensors play a facilitator role, allowing the collection of data in a flexible, low-cost, and simple-to-deploy way.One of the ever-pending challenges of wireless sensor node technologies is their limited energy availability, particularly their limited battery life. To extend their battery life, sensor nodes need to use their energy as frugally as possible. The optimal behavior for a sensor node is highly dependent on the varying operation conditions. Thus, to operate optimally, sensor nodes need to incorporate adaptive mechanisms to dynamically adjust their behavior at runtime. These adaptive mechanisms are commonly referred to as Dynamic Energy Management (DEM).Despite the progress made in DEM, commercial sensor nodes continue to mostly operate using static behaviors, wasting energy. The main limitation impeding the widespread adoption of DEM is that it renders the node's behavior dependent on the operating conditions, thereby making the node's behavior unpredictable. In recent years, self-awareness has been proposed as a promising solution to this challenge. Self-aware systems autonomously adjust their behavior at runtime based on their internal and external operating conditions to achieve their operational goals as efficiently as possible. Consequently, while the behavior of a self-aware system may not be known at a given time, these systems provide some level of predictability by complying with their operational goals.This thesis delves into the use of self-awareness at the sensor node level to guide the node's adaptive behavior. The main objective of this thesis is to provide a solid foundation to support future progress in self-aware sensor nodes. In pursuit of this goal, it presents a reference architecture of a self-aware sensor node solving the existing lack of standardization in their design. Additionally, it proposes two self-aware monitoring methods enabling the node to comply with its battery lifetime target while optimizing its energy allocation to maximize its monitoring accuracy. Another key aspect that limits the adoption of self-awareness at the sensor node level is the node's lack of information and computing capabilities to model complex environments, as is usually the case in Structural Health Monitoring (SHM) applications. This thesis tackles this issue by proposing an anomaly-aware monitoring method tailored for SHM applications, which models the local vibration patterns measured by the node to determine the current monitoring requirements for the node. Finally, the thesis ends by exploring how the concept of self-awareness can be extended through the network, enabling the interaction between self-aware sensor nodes and a self-managing monitoring application running in the cloud.
  • COLL VALENTÍ, ARNAU: Advanced c-Si solar cell structures: application of laser processes and optical nanostructures
    Author: COLL VALENTÍ, ARNAU
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ELECTRONIC ENGINEERING
    Department: Department of Electronic Engineering (EEL)
    Mode: Article-based thesis
    Deposit date: 08/03/2024
    Reading date: 26/04/2024
    Reading time: 11:00
    Reading place: Defensa: Aula de Postgrau, edifici C5-116, ETSETB
    Thesis director: BERMEJO BROTO, ALEXANDRA | MARTIN GARCIA, ISIDRO
    Committee:
         PRESIDENT: VOZ SANCHEZ, CRISTOBAL
         SECRETARI: GARIN ESCRIVA, MOISES
         VOCAL: HERNÁNDEZ GARCÍA, DAVID
    Thesis abstract: This thesis works towards efficient and cost-effective methods to improve the performance of thin silicon solar cells. Focusing on two principal objectives, the Thesis develops novel techniques to enhance the production of colloidal crystals and the possibility to apply these crystals to improve the light trapping efficiency, as well as creating a unique structure for lased doped solar cells. Both advancements focus on improving the production solar cells using low-temperature processes and thin wafers, thus circumventing the dependences of high temperature procedures, while bolstering light trapping capabilities. This approach is motivated by the restarting trend to reduce silicon wafer thickness, therefore this work is pushed by the need to overcome the actual technical and physical constrains. The initial part of the Thesis focuses on the implementation of an electrospray system for the creation of colloidal crystals. These colloidal crystals are intended for application as photonic light trapping structures in solar cells. Afterwards, these structures are tested within a laser firing process to double check the viability to be used within the laser firing technique commonly used in solar cell fabrication.The main achievements within the electrospray deposition technique are the development of polystyrene and SiO2 colloidal crystals with areas in the range of 1-2cm2 and up to 17 layers of ordered particles while keep good optical quality. These layers are created at room temperature and with a process that could be adapted to batch processing and parallelized to increase the area. The technique has also been adapted to be used in non-even surfaces like C-Si pyramids or black silicon. At the same time, these structures had been used to create inverse colloidal crystals from Al2O3 and Al2O3 /TiO2 shells while getting rid of polystyrene nanoparticles. The final Al2O3 /TiO2 structure obtains high reflectivity values up to 98.2%. Finally, these inverse opals are created on top of Al2O3 passivated C-Si wafers. These structures are able to withstand a laser firing process while keeping the passivation, demonstrating the capability to be used with in the solar cells fabrication process.The second part of the thesis focuses in the creation of a process to achieve low temperature solar cells by means of highly-doped regions that are punctually defined through laser processed dielectric films. This technique call ¿DopLaCell¿ stand for doped by laser solar cell. In the initial stages of the process and as a proof of concept, 1x1 cm2 solar cells were created on both p- and n-type substrates with efficiencies of 11.6% and 12.8% respectively. In a second step, 1x1 cm2 n-type c-Si solar cells are created using the ¿cold¿ p+ emitters used in the ¿DopLaCell¿ structure. This second batch of solar cells uses a Heterojunction with Intrinsic Thin layer (HIT) in the front face. This approach avoids the use of Transparent Conductive Oxide (TCO) on the back side of the cell thus improving the reflectivity especially with IR photons. These cells reach efficiencies up to 18.1%. Finally the process is being improved towards a pure texturized ¿DopLaCell¿. In this final step, totally ¿cold¿ 2x2 cm2 solar cells are fabricated with and efficiency up to 17.0 % .This work represents a one big step forward towards a future path of thin silicon solar cells fabrication, addressing the actual technology limitations and enabling the possibility to overcome the principal issues. This research lays the ground towards thin, affordable and efficient solar cells improving the path towards a more viable and eco-friendly energy future
  • RALLIS, KONSTANTINOS: Novel Nanoelectronic Circuits and Systems
    Author: RALLIS, KONSTANTINOS
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ELECTRONIC ENGINEERING
    Department: Department of Electronic Engineering (EEL)
    Mode: Normal
    Deposit date: 13/03/2024
    Reading date: 09/05/2024
    Reading time: 11:00
    Reading place: ETSETB - Multimedia room Building B3 at Campus Nord UPC
    Thesis director: RUBIO SOLA, JOSE ANTONIO | SIRAKOULIS, GEORGIOS
    Committee:
         PRESIDENT: JIMÉNEZ JIMÉNEZ, DAVID
         SECRETARI: ABADAL CAVALLÉ, SERGI
         VOCAL: CUCU LAURENCIO, NICOLETA
    Thesis abstract: Lately, in the rise of the era of 2D materials, Graphene is one of the materials that has been extensively investigated for its possible integration in computing devices and thus computing circuits. This is mainly attributed to its very wide set of appealing properties. The combination of its electronic properties with others, such as mechanical, optical or chemical properties, can extend the range of use of computing devices and lead to groundbreaking interdisciplinary applications. However, this integration of Graphene in switching and computing elements is not easy. In this dissertation, the Non-Equilibrium Green's Function method (NEGF), along with the Tight Binding Hamiltonians, are fitted on experimental data from fabricated Graphene devices. Although as a computational method, NEGF is appropriate for the simulation of small-scale devices in the regime of nanometers, its ability to be efficiently expanded for the description of larger devices is presented. The aforementioned electronic properties of the material are highly related to its shape and structure. Consequently, it requires a very precise fabrication method that can guarantee the minimum presence of defects on the Graphene grid. For that reason, the effect of defects is deeply investigated. The NEGF method is further enhanced in order to be able to incorporate lattice defects. The most common lattice defects are included, meaning the single and double vacancy. A framework has thus been created, so that for the first time the user can select areas of interest on the grid, in which the defects will be concentrated. Those concentrations can also be variable. Moreover, an extensive study is conducted on defective grids with different concentrations of single and double vacancies. The investigated grids are non-rectangular and have regions with different widths. The effect of those vacancies on the electronic properties of Graphene is investigated, and more specifically their effect on the conductance and the energy gap of the device, as well as the effect on circuit-centered characteristics such as the leakage current and ON/OFF current ratio. Having a functional, robust, versatile, and accurate model, the focus of this thesis is extended to the level of circuits. The model is imported into SPICE through Verilog-A. In this part, the thesis emphasizes on the investigation of the switching capabilities of L-shaped Graphene Nanoribbons (GNRs). These structures have been proven to be able to operate as switches, without the use of a back gate, and here, the properties that are dependent on their dimensions are explored and optimized for the first time. The optimized structures are then used for the realization of a set of computing topologies. Initially, a novel area-optimized 2-branch comb-shaped topology is introduced for the realization of a universal computing set that consists of an AND, OR, NOT gate, and a Buffer. All these logic operations can be mapped on the same topology through appropriate biasing. Then, an extension of this, the 3-branch comb-shaped topology is proposed, which is able to operate as a 2-XOR, 3-XOR and 3-MAJ gate. The circuit of a 1-bit full adder, is also presented. For the evaluation of the performance of the topologies, several related metrics are employed such as the area, delay, power dissipation and the power-delay product. The operation of these topologies relies of the principles of Pass Transistor Logic (PTL) and reconfigurable computing. Finally, in an attempt to go beyond the conventional Boolean logic, the compliance of Graphene with Multi-Valued Logic (MVL) circuits and applications is investigated. The ability of a Graphene Quantum Point Contact (G-QPC) device to encode the digits of the radix-4 numeral system is presented and as a proof of concept, the operation of an arbitrary radix-4 adder is explained.

DOCTORAL DEGREE IN ENVIRONMENTAL ENGINEERING

  • KILIÇ, EYLEM: Advancing the use of waste streams in plastic composites
    Author: KILIÇ, EYLEM
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN ENVIRONMENTAL ENGINEERING
    Department: (DECA)
    Mode: Article-based thesis
    Deposit date: 18/03/2024
    Reading date: 30/05/2024
    Reading time: 12:00
    Reading place: Place: ETSECCPB UPC, Campus Nord Building C1. Classroom: 002 C/Jordi Girona, 1-3 08034 Barcelona
    Thesis director: PUIG VIDAL, RITA | FULLANA PALMER, PERE
    Committee:
         PRESIDENT: MÉNDEZ GONZÁLEZ, JOSÉ ALBERTO
         SECRETARI: GASSO DOMINGO, SANTIAGO
         VOCAL NO PRESENCIAL: EL BACHAWATI, MAKRAM
    Thesis abstract: The leather industry faces global challenges related to its sustainability credentials due the significant waste generated throughout the leather production processes. In the context of contemporary environmental policy, which is increasingly focused on sustainable production and consumption, the need to understand and mitigate environmental impacts associated with leather has become a strategic and economic imperative. In this respect, a comprehensive "gate-to-gate" life cycle assessment (LCA) was conducted following the newly released Leather Product Environmental Footprint Category Rules (PEFCR). The analysis aimed to evaluate the environmental impacts of leather production, with a specific focus on New Zealand's leather production industry, mainly due to its agriculturally oriented economy and large size of livestock sector.This thesis builds upon this foundation by addressing the issue of solid waste in the leather industry. Therefore, a waste valorization strategy was investigated to convert unavoidable waste into valuable resources through the production of new, value added composites, which involves incorporating leather waste (BF) into virgin and recycled high-density polyethylene (HDPE). The focus of this thesis is to analyze environmental impact of these novel composites, to improve the implementation of circular economy principles, within the context of their use in automotive bumper production. The environmental impact of these novel composites was compared to conventional polypropylene (PP), bumpers, by performing a cradle-to-gate life cycle assessment (LCA). The thesis also aims to provide a contribution to LCA methodology applied to composite materials, by adopting various functional units, such as mass, volume, and the volume of raw material fulfilling a specific impact strength requirement.The in-depth analysis of mechanical and thermal properties of the BF/HDPE composites highlights the composite¿s potential for industrial applications that require high mechanical strength and low thermal conductivity. The incorporation of leather waste not only enhances material properties, but also contributes to environmental sustainability by converting unavoidable waste into a value added product. The environmental assessment, adopting a cradle-to-gate LCA with various functional units, indicates that composites made from recycled HDPE and leather waste have a lower environmental impact than those from virgin materials. The only exception is when the material's impact strength is a key factor in the functional unit, due to the higher impact strength of HDPE-BF composites. In all cases, increasing the content of recycled materials in the bumpers increases its environmental performance, supporting the advancement of circular economy principles in the automotive sector.The research highlights the significance of choosing an appropriate functional unit, based on specific applications such as automotive bumpers, in comparing the environmental footprint of innovative composite materials with that of traditional materials. Broadening the scope of evaluation to include various functions yields a more realistic scenario, but it leads to higher uncertainties in the results as well.

DOCTORAL DEGREE IN MATERIALS SCIENCE AND ENGINEERING

  • GORDON POZUELO, SANDRA: Mechanical integrity of coated PcBN systems: Mechanics and mechanisms involved under service-like conditions
    Author: GORDON POZUELO, SANDRA
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN MATERIALS SCIENCE AND ENGINEERING
    Department: (CEM)
    Mode: Article-based thesis
    Deposit date: 19/02/2024
    Reading date: 10/05/2024
    Reading time: 11:00
    Reading place: EEBE (Escola d'Enginyeria Barcelona Est), Aula A2.14, planta 2, Campus Diagonal-Besòs
    Thesis director: LLANES PITARCH, LUIS MIGUEL | ROA ROVIRA, JOAN JOSEP
    Committee:
         PRESIDENT: MARI, DANIELE
         SECRETARI: FARGAS RIBAS, GEMMA
         VOCAL: BOTERO VEGA, CARLOS ALBERTO
    Thesis abstract: Polycrystalline cubic boron nitride (PcBN) is a composite competitive cutting tool material that excels performance when machining difficult-to-cut materials (e.g. hardened steels, superalloys, etc) due to its exceptional mechanical properties. In practice, PcBNs are coated with a ceramic film to prevent and prolong the onset of tribo-oxidation and abrasive wear. Although there is not a unique consolidated opinion regarding the benefits of coatings in PcBN, most of the bibliography agrees on their use when involving hard turning operations. Most of the research address the tool performance and wear mechanisms, whereas information involving materials science aspects of PcBN and coated PcBN tools, on the basis of understanding microstructure ¿ mechanical properties correlations, is quite limited. In this regard, this thesis focusses on studying hardness, fracture toughness and wear resistance as they are key mechanical properties controlling the mechanical integrity and reliability of the tool, which are related with the contact response, fracture resistance (e.g. premature chipping) and effective tool life, respectively. Four distinct substrates of the coated PcBN grades are studied and first characterized, including the development of characterization and testing protocols. In doing so, focus ion beam tomography and three-dimension (3D) image reconstruction was implemented to study the bulk microstructural characteristics of a PcBN grade with high cBN content and metallic binder. It was found to be a powerful and useful method to gain in-depth knowledge and understanding the microstructural characteristics of PcBN composite materials, additionally to those gathered by conventionally 2D method. The study then focuses on the assessment of the micromechanical properties of PcBN composite materials, as they are known to be key for optimizing their performance through microstructural design. High-speed nanoindentation is successfully implemented to characterize and correlate microstructure with local mechanical properties of such hard and stiff composite materials; where two different methodologies, 1D and 2D Gaussian, are used for statistically deconvoluting the data. It is found that the harder PcBN grade is clearly related with the high cBN content. A scaled-up method was employed to evaluate the contact response of uncoated PcBN grades. The higher cBN content and metallic binder grade, exhibits higher resistance to crack nucleation and a more gradual transition through different damage scenarios due to the concomitant increase of hardness and fracture toughness of this grade. Regarding fracture toughening mechanisms, crack path changes from propagation across the ceramic binder to transgranular fracture through cBN particles, as the cBN content increases. Very interesting, fracture toughness is enhanced by crack interaction with intrinsic sub-grained or twin boundaries within the individual cBN particles as well as by crack deviation through nano cBN particles dispersed in the binder. Afterwards, research was aimed to characterize coated PcBN (with different chemical nature and bias voltage), mainly in terms of coating adhesion strength and mechanical integrity of bulk coated systems as a function of the PcBN substrate microstructural assemblage. Mechanical response of the coated system, assessed by using Rockwell C indentation technique and scratch testing, is strongly dependent on the underneath substrate microstructural assemblage; and therefore, its different intrinsic hardness-toughness correlation. Finally, TiAlN-coated PcBN inserts were used to mill a hardened cold work tool steel. It was proposed as an exploratory study of milling performance of coated PcBN systems to assess the onset of coating failure without involving the emergence of other wear phenomena (e.g. thermally-driven ones).
  • JOHANSSON, LINH HA HUONG LOVISA: 3D-printed biomimetic bone grafts: Clinical validation and improvement strategies
    Author: JOHANSSON, LINH HA HUONG LOVISA
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN MATERIALS SCIENCE AND ENGINEERING
    Department: (CEM)
    Mode: Normal
    Deposit date: 26/03/2024
    Reading date: 06/05/2024
    Reading time: 10:00
    Reading place: EEBE (Escola d'Enginyeria Barcelona Est), Aula A0.02, Edifici A, planta 0, Campus Diagonal-Besòs.
    Thesis director: GINEBRA MOLINS, MARIA PAU | RAYMOND LLORENS, SANTIAGO
    Committee:
         PRESIDENT: MONTERO MARTÍN, JAVIER
         SECRETARI: DÍEZ ESCUDERO, ANNA
         VOCAL: OLDE DAMINK, LEON
    Thesis abstract: Bone defects pose a major clinical and socio-economic burden and there is a clear need for new bone grafting strategies that take into account the physical-chemical properties of the native bone, to help treat bone defects in a time- and cost-effective way.Autografts are considered the gold standard due to their biological performance, however, additional surgical procedures for bone harvesting poses drawbacks. For this reason, the industrial- and scientific communities have focused on the development of synthetic bone grafting solutions. The present PhD thesis advances in the development of biomimetic personalised bone grafting solutions, including the clinical validation and the development of new material formulations with improved mechanical performance. Chapter 1: Gives an insight into the general context of bone regeneration and the materials used as bone substitutes, emphasising the need for innovative personalised synthetic bone grafts. This chapter offers an overview of additive manufacturing techniques and frequently employed ceramics in bone tissue engineering and their consolidation strategies. Further, a global presentation is given on their clinical translation, especially emphasising calcium phosphates and MimetikOss® 3D. Chapter 2: Focuses on evaluating the clinical performance of the 3D-printed bone graft MimetikOss® 3D in a horizontal vestibular augmentation. The ridge in the anterior maxilla is reconstructed with a synthetic patient-specific bone graft with a staged approach for dental implant placement. 3D-printed bone grafts permit a perfect fit in the surgical site without any additional shaping, which reduces surgery time compared with other bone augmentation techniques (e.g., guided bone regeneration, standard blocks). The bone graft is completely osseointegrated and its macropores colonised by newly formed bone at 10-months post-surgery without signs of encapsulation. A stable bone gain is achieved, resulting in a fully restored bone width. Dental implants were placed without the need for regrafting and stayed stable at 1- year post-loading, demonstrating the clinical relevance of these bone grafts in vestibular bone augmentations. Chapter 3: Encompasses two routes for incorporating PLGA, as a binder or as a coating, to 3D-printed self-setting scaffolds, taking advantage of their low-temperature hardening, to enhance their mechanical performance. The addition of PLGA increases the capacity for plastic deformation, which significantly improves their toughness (by a 2.6-fold and 4.2-fold change in flexion for PLGA as a binder and as a coating, respectively; and by an 8-fold and 1.6-fold change in compression, respectively), while preserving the in vitro cell viability of MimetikOss® 3D (with MG-63 and hMSC cells). The configuration with PLGA as binder is the better option regarding the enhancement in mechanical performance and osteogenic differentiation (2-fold and 1.5-fold change increase for ALPL and RUNX2 expressions, respectively). Screwability tests demonstrate that the enhanced mechanical properties increase the fixability of the scaffolds in a complex fixation indication in the jaw. Chapter 4: Discusses the impact, limitations, and challenges of 3D-printed biomimetic bone grafts and emphasises the steps remaining before transferring the new technology to the market. It is shown that the developments made in this PhD thesis can be beneficial for the patients and have a positive impact on society. Composite patient-specific bone grafts have an impact on cost, time and performance of the future bone grafting solutions, and they strive towards added value in personalised medicine. This will help treat complex and large bone defects in a way that benefits both the clinician and the patient and encourages sustainable healthcare based on synthetic biomaterials. This technology was protected by a filed patent application, however, there is still work left before it can be translated to the market.

DOCTORAL DEGREE IN MECHANICAL, FLUIDS AND AEROSPACE ENGINEERING

  • AZIZIAN, POOYA: MICROFLUIDICS FOR BIOSENSING WITH ADDITIVE MANUFACTURING:SIMULATION MODEL AND FABRICATION
    Author: AZIZIAN, POOYA
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN MECHANICAL, FLUIDS AND AEROSPACE ENGINEERING
    Department: Department of Mechanical Engineering (EM)
    Mode: Article-based thesis
    Deposit date: 26/03/2024
    Reading date: 22/04/2024
    Reading time: 09:00
    Reading place: Sala de Conferències del TR1 de Campus UPC Terrassa.
    Thesis director: CASALS TERRE, JASMINA | CABOT CANYELLES, JOAN MARC | ORTEGA NOVILLO, ADRIAN | RICART CAMPOS, JORDI
    Committee:
         PRESIDENT: BENITO LÓPEZ, FERNANDO
         SECRETARI: RODRÍGUEZ VILLARREAL, ÁNGELES IVÓN
         VOCAL: BORTOLOTTI, CARLO AUGUSTO
    Thesis abstract: Over the last decade, biosensing has been moving towards the miniaturized and cost-effective point-of-care (POC) testing. Even though microfluidics is becoming a key enabling technology for POC testing, the need for robust peripheral equipment has been a notable limiting factor in extending its prevalence. By manipulating microchannels' geometry and surface properties, capillary-driven microfluidics can control fluids spontaneously, reducing the need for external instrumentation. This advantage is becoming more accessible, considering that additive manufacturing technologies are reaching a high level of maturity that allows cost-effective and rapid fabrication of three-dimensional (3D) features down to the sub-millimeter scale. Therefore, capillary-driven microfluidics are achieving higher technological readiness.A key component within the field of capillary-driven microfluidics is the capillary valve. The capillary valve can automatically stop and actuate fluid flows depending on the molecular interactions between the liquid and the microchannel surfaces. However, a major concern for these valves is the presence of unwanted diffusion and mixing during the valve function, leading to cross-contamination between reagents or even with the sample. This thesis studied different methods in the literature to stop and actuate the flow as the two main stages of these valves. Then, passing over the state-of-the-art, a novel 3D diffusion-free capillary valve was developed: the ¿-valve. This valve incorporates an air gap between solutions to eliminate diffusion between them. Based on the valve's distinctive configuration, the capillarity of the microfluidic circuit displaces the air gap at a predefined time to actuate without producing bubbles into the circuit. The proposed valve's design and study were performed via numerical simulation and experimental assays, while 3D printing (3DP) was employed to fabricate the microfluidic devices.The ¿-valve's functionality, single and in array, was proven and compared with the conventional capillary valves. Then, it was applied to the precise control of reagents for biosensing, demonstrated by two different competitive immunoassays via (i) the subsequent washing step for the lateral flow assay of cortisol, and (ii) the valve array for the sequential delivery of sample and three reagents to detect benzodiazepine quantitatively. The sensitivity was enhanced by avoiding the reagent diffusive premixing when using the ¿-valve by approximately 40%. As a result, the proposed capillary valve is a promising capillary component for conducting automated immunoassays at POC.In conclusion, the novel capillary valve addresses a current biosensing sensitivity issue coming from reagent diffusive premixing, and together with other disruptive capillary-driven circuit components, paves the way for truly packing lab-on-a-chip without requiring a lab around the chip. In this regard, the next generation of capillary-driven microfluidic devices will be promising tools offering (i) miniaturized features needing fewer samples and reagents, (ii) non-costly POC testing without peripheral instrumentation, (iii) automated, preprogrammed, and easy-to-use for non-expert users, as well as (iv) sensitive, precise and reliable based on novel 3D designs employing surface properties. This is owing to the recent advancements in microfabrication based on additive manufacturing extending 3D forming freedom.
  • FAKHRAEI, JAVAD: Contributions to meshless methodologies for the simulation of acoustic radiation and scattering problems
    Author: FAKHRAEI, JAVAD
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN MECHANICAL, FLUIDS AND AEROSPACE ENGINEERING
    Department: Department of Mechanical Engineering (EM)
    Mode: Normal
    Deposit date: 16/02/2024
    Reading date: 19/04/2024
    Reading time: 11:30
    Reading place: Sala de conferències del TR5 de l'ESEIAAT (Terrassa)
    Thesis director: ARCOS VILLAMARÍN, ROBERT | PÀMIES GÓMEZ, TERESA
    Committee:
         PRESIDENT: CORTESÃO GODINHO, LUIS MANUEL
         SECRETARI: CLOT RAZQUIN, ARNAU
         VOCAL: DENIA GUZMÁN, FRANCISCO DAVID
    Thesis abstract: Meshless methodologies have emerged as a valuable tool in the field of computational acoustics, offering an efficientapproach to model complex acoustic phenomena. These innovative numerical techniques offer a promising alternative totraditional mesh-based methods to deal with scattering and radiation acoustic wave propagation problems. Unlikeconventional mesh-based approaches, meshless methods do not rely on structured grids of the domain or its boundary,enabling more flexible and adaptive discretisation. The absence of a mesh eliminates the need for time-consuming gridgeneration and refinement, simplifying the simulation process and reducing the computational effort. This efficiency isespecially valuable in addressing large-scale acoustic simulations, such as those encountered in environmental noiseassessments and underwater acoustics.This dissertation is particularly centred on the study and development of a novel group of numerical meshless methodsrelated to boundary collocation approaches. These methods are employed to address problems involving the propagation ofacoustic waves in unbounded domains. The novel approaches presented in this research offer several benefits with respectto existing methodologies, in terms of robustness, accuracy and computational efficiency. Furthermore, in contrast to a fullythree-dimensional analysis, the approaches presented in this dissertation are formulated in the two-and-a-half-dimensionaldomain. This domain is particularly suited for scenarios where the system is subjected to longitudinally moving loads orsources and where the geometry of the system remains longitudinally invariant.The meshless methodologies developed in this thesis mainly rely on two of the most well-established meshless methods inthe field: the singular boundary method and the method of fundamental solutions. In the first instance, an approach based ona two-and-a-half-dimensional version of the singular boundary method is proposed and studied to address acousticradiation and scattering problems. Subsequently, its applicability for real case acoustic scenarios is evaluated throughsimulations involving point source diffraction in the presence of thin noise barriers. As probably representing the mostsignificant novelty of this dissertation, a hybrid method that combines the singular boundary method and the method offundamental solutions is introduced. It is specifically devised to tackle acoustic wave propagation problems featuringcomplex boundary geometries with corners and sharp edges. Finally, two modification techniques are proposed to enhancethe previously mentioned approach based on the two-and-a-half-dimensional sin- gular boundary method. The Burton¿Millerformulation in a first instance, and a dual surface scheme in the second. These modifications aim to overcome the issue ofspurious eigensolutions, which arises from the non-uniqueness solution problem associated with boundary collocationmethods. To comprehensively assess the capabilities and performance of the proposed meshless methods, the availableanalytical solutions and alternative numerical strategies such as the well-known boundary element method are also utilisedin various designed benchmark problems.

DOCTORAL DEGREE IN PHOTONICS

  • HÖSCHELE, JONATAN: A strontium quantum-gas microscope
    Author: HÖSCHELE, JONATAN
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Deposit date: 25/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: TARRUELL PELLEGRIN, LETICIA
    Committee:
         PRESIDENT: SCHRECK, FLORIAN EBERHARD
         SECRETARI: DE RIEDMATTEN, HUGUES
         VOCAL: WEITENBERG, CHRISTOF
    Thesis abstract: The development of quantum-gas microscopes has revolutionized the field of quantum simulation with ultracold atoms. More specifically, their ability of direct observation and manipulation of degenerate quantum gases in optical lattices on a single particle level has brought novel ways of probing and engineering quantum degenerate many-body systems. So far, most of these setups have focused on alkali atoms. Combining quantum-gas microscopy with the properties of alkaline-earth atoms such as strontium gives rise to exciting research directions. In this thesis, we report on the design and construction of a strontium quantum-gas microscope. The findings in this thesis can be divided into three parts.In the first part, we focus on the accumulation of atoms in the science cell and develop a scheme to enhance the atom number in magneto-optical traps of strontium atoms operating on the 461-nm transition. This scheme resonantly populates a short-lived reservoir state, partially shielding the atomic cloud from losses in the cooling cycle. We demonstrate a factor of 2 enhancement in the atom number for the bosonic isotopes Sr-88 and Sr-84, and the fermionic isotope Sr-87, showing the efficient capture of these isotopes in our experiment. Our scheme can be readily implemented in the majority of strontium experiments, given that the shielding transition at 689 nm is commonly used for further cooling. In our case, the shielding scheme facilitates the generation of Bose-Einstein condensates.The second part of the thesis reports on the generation of degenerate quantum gases of Sr-84 with up to 200000 atoms. After summarizing the required cooling steps, we study the formation of Bose-Einstein condensates during evaporative cooling in our experiment. Analyzing the evolution of the horizontal and vertical size of our quantum-degenerate clouds in free fall leads to the characteristic asymmetric expansion, which we compare to theory for our experimental parameters. We also show the generation of smaller Bose-Einstein condensates of less than 20000 atoms with the help of a light-sheet potential. With this highly-anisotropic confinement we can consider our Bose-Einstein condensates two-dimensional for atom numbers of the order of 1000.In the third part we demonstrate site-resolved imaging of a Sr-84 bosonic quantum gas in a Hubbard-regime optical lattice potential. We confine the quantum gas by a two-dimensional optical lattice and the aforementioned light-sheet potential, both operating at strontium's clock-magic wavelength. A high-NA imaging objective enables single-atom and single-site resolved fluorescence imaging by scattering photons on strontium's broad 461-nm transition, while performing efficient attractive Sisyphus cooling of the atoms on a narrower transition at 689 nm. We reconstruct the atomic occupation of the lattice sites from the fluorescence images, obtaining imaging fidelities above 94%. Finally, we realize a Sr-84 superfluid in the Bose-Hubbard regime and observe its characteristic interference pattern after free expansion in the light sheet with single-atom resolution. Our strontium quantum-gas microscope provides a new platform to study dissipative Hubbard models and cooperative effects in atom-light interaction at the microscopic level. Moreover, the ability to capture also the fermionic isotope Sr-87 paves the way to generate degenerate Fermi gases with SU(N) symmetry and study SU(N) quantum magnetism.
  • RIVERA DEÁN, JAVIER: Non-classical states of light: generation via strong-field processes and applications in quantum key distribution
    Author: RIVERA DEÁN, JAVIER
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN PHOTONICS
    Department: Institute of Photonic Sciences (ICFO)
    Mode: Normal
    Deposit date: 25/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: ACÍN DAL MASCHIO, ANTONIO | CIAPPINA, MARCELO
    Committee:
         PRESIDENT: KAMINER, IDO
         SECRETARI: DE RIEDMATTEN, HUGUES
         VOCAL: AHUFINGER BRETO, VERÓNICA
    Thesis abstract: The dawn of the last century marked the onset of the first quantum revolution, a period characterized by groundbreaking discoveries culminating in the establishment of quantum mechanics. Over time, the abstract concepts introduced by this new branch of Physics, evolved into indispensable practical devices shaping our daily lives. This technological evolution spurred our actual era, centered around information exchange and acquisition, laying the foundation for what is now termed the second quantum revolution. This phase aims to leverage quantum information science, which harnesses quantum mechanics' properties to propel advancements in information processing, communication, and computation, leading to revolutionary quantum technologies.At the heart of advancing quantum technologies lies the exploration of what are known as non-classical states --physical manifestations exhibiting behaviors diverging from classical physics, necessitating the framework of quantum mechanics for explanation. Manipulating and generating these states delineates the frontier of progress in quantum technology. Therefore, it is crucial to devise methodologies for generating and controlling non-classical states. Photonics emerges as a promising platform within this context due to its robustness and exceptional manageability of this kind of states.For the above reasons, this Thesis adopts a dual focus. Firstly, we delve into the generation of non-classical states of light through strong-field processes. These processes entail interactions between light and matter, where light intensities contend with the binding forces that keep electrons bound to their respective nuclei. Our exploration demonstrates the utility of strong-field phenomena in generating non-classical states of light, exhibiting intriguing features dependent on specific process dynamics and the materials involved in excitation. Secondly, we investigate the constraints and prerequisites of non-classical states of light sources --beyond those derived from the aforementioned strong-field processes-- for the advancement of quantum communication. In particular, we analyze quantum key distribution, aiming to create a secret key exclusively known by the communicating parties for encrypting and decrypting messages.Therefore, this Thesis can be understood as a zeroth step towards leveraging strong-field physics as a prospective tool for quantum information science applications, as well as an exploration about the advances and limitations of photonic-based setups for quantum key distribution.

DOCTORAL DEGREE IN POLYMERS AND BIOPOLYMERS

  • MARTÍ BALLESTÉ, DÍDAC: Advanced molecular modelling techniques for immunosensor nanointerfaces
    Author: MARTÍ BALLESTÉ, DÍDAC
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN POLYMERS AND BIOPOLYMERS
    Department: Department of Chemical Engineering (EQ)
    Mode: Normal
    Deposit date: 13/03/2024
    Reading date: 03/06/2024
    Reading time: 11:30
    Reading place: Sala Polivalent de l'Edifici I, Edifici I, planta baixa, Campus Diagonal-Besòs
    Thesis director: TORRAS COSTA, JUAN | ALEMAN LLANSO, CARLOS ENRIQUE
    Committee:
         PRESIDENT: POATER TEIXIDOR, ALBERT
         SECRETARI: SASSELLI RAMOS, IVAN
         VOCAL: CREHUET SIMON, RAMON
    Thesis abstract: Viruses and their infections have always affected human lives throughout history. Globalization contributed positively to the progress of human society in science and medicine which permited to deal with viruses, but the reality is that the number of infections does not decrease over the years. Globalization itself is here agin one of the main factors, as people move in more densely populated areas, which favors the spread of viruses. Another important factor is the viruses themselves, which over the years have shown a constant evolution that allowed them to adapt to new hosts. For these reasons, human-led efforts such as vaccines, antiviral treatments, sensors etc. are critical tools for human survival, and like viruses, humans must continue to innovate. This thesis focused on providing different understandings of a series of biochemical processes at molecular the level to facilitate the design of plasmonic resonance sensors, currently used for detecting diseases such as cancer, to enable a similar detection improvement in other viruses and diseases such as HIV and SARS-Cov-2.This thesis is divided into two parts, with the first focusing on the characterization related to the HIV virus. Several studies have been carried out using a combination of different molecular simulation techniques, classical dynamics, quantum mechanics and hybrid QM/MM-MD methods. These studies characterize the behavior of the antibody chosen in the design of the sensor, IgG1 , as well as its interactions with the silica surface that compounds the sensor and its orientation once functionalized on top of the surface. Additional studies were performedm focusing on the interaction between the immunoglobulin G and the glycoprotein that forms part of the HIV virus spike, and permited to identify the interactions helping the antibody to attach to the virus for the virus inhibition.In the second part, the same molecular simulation techniques have been used to study the virus which completely changed the world in 2020, SARS-CoV-2 known for the disease COVID19. As this virus was new at the time of the thesis, there was a dramatic lack of knowledge. Molecular modelling techniques were used to study the behavior of the virus spike in presence of heat or solvated in water. Similar studies to the case of HIV-IgG1 were performed between SARS-CoV-2 spike and different promising antibodies with the goal to identify the best candidate for sensor functionalization or virus inhibition. In this section, the interaction between the virus spike and the ACE2 enzyme, the target cell that SARS-CoV-2 use to infect human body, was also characterized. Finally, new antibodies were designed combining the previous ones with IgG1 and their behavior was studied in the presence of the sensor¿s silica surface and the nanoparticles gold surface used in the detector

DOCTORAL DEGREE IN SIGNAL THEORY AND COMMUNICATIONS

  • UDAONDO GUERRERO, CARLOS: Analysis of Q factor degradation mechanisms in BAW resonators
    Author: UDAONDO GUERRERO, CARLOS
    Thesis file: (contact the Doctoral School to confirm you have a valid doctoral degree and to get the link to the thesis)
    Programme: DOCTORAL DEGREE IN SIGNAL THEORY AND COMMUNICATIONS
    Department: Department of Signal Theory and Communications (TSC)
    Mode: Normal
    Deposit date: 22/03/2024
    Reading date: pending
    Reading time: pending
    Reading place: pending
    Thesis director: COLLADO GOMEZ, JUAN CARLOS | MATEU MATEU, JORDI
    Committee:
         PRESIDENT NO PRESENCIAL: AIGNER, ROBERT
         SECRETARI: VALENZUELA GONZALEZ, JOSE LUIS
         VOCAL NO PRESENCIAL: VILLANUEVA TORRIJO, LUIS GUILLERMO
    Thesis abstract: The emergence of smartphones not only changed the way people uses its phone for, but it also changed the traffic amount that networks need to carry, increasing the demand of higher data rates. The overall result was the appearance of 4G networks, and nowadays, the current development of 5G, implying the need for more frequency bands, and the application of new techniques such as Carrier Aggregation (CA), MIMO antennas, and so on. All these market driven necessities suppose a great challenge for the radiofrequency (RF) industry, which have been facing the necessity of miniaturization and band coexistence on its devices since the beginning of mobile communications.Microwave filters based on Bulk Acoustic Wave (BAW) resonators, have been able to this day to overcome these limitations. These devices consist in a thin piezoelectric layer comprised by two metal electrodes, and an acoustic confinement method, which can be simply made of air or a Bragg reflector. The use of electroacoustic technology enables to reduce the filter size up to five orders of magnitude, allowing the integration of multiple filters in handsets. This thesis focuses on modelling some of different physical phenomena at the resonator level that affect the performance of the filters.The first part of this thesis is the one regarding the spurious response of BAW resonators. This response is originated by acoustic waves traveling in the lateral dimension of the resonator. These waves couple electromechanically, degrading the filter response. BAW filters have been capable of overcoming this limitation suppressing them by the use of different electrode geometries (Apodization), or by surrounding the electrode by a decreased, or increased frame (Border Ring). The nature of these waves is studied through the thesis and several equivalent models are proposed in order to accurately predict them, helping to the design of the correspondent suppression structures. One of this thesis contributions regarding the lateral spurious resonances, consists in making use of a modified Mason model to determine the origin of the additional spurious resonances generated by the Border Ring. These resonances can be attributed to an acoustic mode, different from the fundamental, propagating across the resonator stack. By adding nonlinear sources to that model, the second harmonic (H2) emissions and the impact of the spurious resonances in them, is also studied.Finally, a new equivalent model based in the Transmission Line Matrix (TLM) method is proposed for the acoustic cavity of a BAW resonator. This new approach is able to model resonators with different electrode geometries, in a much faster way than traditionally used methods like the Finite Elements Method (FEM). In addition, by determining different propagation regions, it can be used to model both the apodization and the Border Ring at the same time.The second family of contributions are the ones regarding to the thermoelastic behavior of the BAW resonators. A solid heats up when compressed and vice versa. In a harmonic oscillation, when heat is able to flow through the solid regions, this flow from hotter to colder regions generates a relaxation of the acoustic wave. This is the thermoelastic damping. A thermo-electro-mechanical Mason model is used for quantifying this source of losses on BAW resonators. The model is compared with experimental data taken at cryogenic temperatures and an analysis of losses of the broadband spurious resonances of the Bragg reflector has been performed.

Last update: 18/04/2024 04:45:33.